Chapter 1
Elements of Information Theory for Networked
Control Systems

Massimo Franceschetti and Paolo Minero

1.1 Introduction

Next generation cyber-physical systems [35] will integrate computing, communi-
cation, and control technologies, to respond to the increased societal need to build
large-scale systems using digital technology and interacting with the physical world.
These include energy systems where the generation, transmission, and distribution
of energy is made more efficient through the integration of information technolo-
gies; transportation systems that integrate intelligent vehicles and intelligent infras-
tructures; and health care systems where medical devices have high degree of intelli-
gence and interoperability, integrating wireless networking and sensing capabilities.

One of the fundamental characteristics of cyber-physical systems is that commu-
nication among computing and physical entities occurs over communication chan-
nels of limited bandwidth and is subject to interference and noise. This challenges
the standard assumption of classical control theory that communication can be per-
formed instantaneously, reliably, and with infinite precision, and leads to the devel-
opment of a new theory of networked control systems (NCS) [7, 8, 24, 30].

This chapter complements the surveys [2, 50] that focus on the communication
constraints imposed by the network on the ability to estimate and control dynamical
systems. We describe in a tutorial style the main ideas and techniques that con-
tributed shaping the field, with particular attention to the connections with Shan-
non’s information theory. A compendium of additional related results can be found
in the recent monograph [44], relating results to Kolmogorov’s approach to infor-
mation theory via the concept of topological entropy [1].
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We shall not repeat proofs here that are readily available in the literature, but
rather concentrate on providing specific illustrative examples and on bridging be-
tween different results, with the objective of outlining the leitmotiv and the central
theoretical issues underlying this research area. We also present some new results
that were not mentioned in the above works, and draw attention to a recent approach,
based on the theory of Markov jump linear systems (MJLS) [15], that can be used
to derive in a unified way many earlier results obtained using different techniques.
Finally, we give a perspective on the open problems that are the natural candidates
for future research in the field.

The rest of the chapter is organized as follows. In the next section, we describe
a standard model of NCS. In Sect. 1.3, we present a basic result on the data-rate re-
quired in the feedback loop to guarantee system’s stabilization. This is an important
point of contact between communication and control theories and can be written in
various forms. These are illustrated in Sect. 1.4, along with their connections with
different notions of information capacity and their associated reliability constraints.
Section 1.5 focuses on challenges in the design of suitable error correcting codes to
satisfy these constraints. Section 1.6 looks more closely at a specific communication
channel, illustrating how the theory of MJLS can be used to recover in a unified way
many of the results on system stabilization that appeared in the literature. Finally,
Sect. 1.7 discusses some of the problems and challenges that lay ahead.

1.2 Networked Control Systems

The block diagram of a typical NCS is depicted in Fig. 1.1. The state of a dynam-
ical system evolves over time according to deterministic plant dynamics, possibly
affected by stochastic disturbances. Sensors feed back the plant’s output to a con-
troller over a digital communication channel. The control action is then sent back
to the plant over another digital communication channel for actuation. Communica-
tion is affected by noise, and the channel has limited bandwidth as it may be shared
among different components in a network setting. This limits the amount of infor-
mation that can be transferred in the feedback loop at each time step of the evolution
of the system.

A natural mathematical abstraction of the above scenario considers the plant to
be a discrete-time, linear, dynamical system, affected by additive disturbances

Xk+1 = Axg + Bug + vy, (1.1a)
i = Cxg + wg, (1.1b)
where k =0, 1, ... is time, x; € R4 represents the state variable of the system,

uy € R™ is the control input, vy € R4 is an additive disturbance, yr € R? is the
sensor measurement, wy € R” is the measurement disturbance, and A, B, C are
constant real matrices of matching dimensions. Standard conditions on (A, B) to
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Fig. 1.1 Feedback loop model of a networked control system

be reachable, (C, A) observable, are added to make the problems considered well-
posed.

In a first approximation, noise and bandwidth limitations in the communication
channels can be captured by modeling the channels as “bit pipes” capable of trans-
mitting only a fixed number r of bits in each time slot of the system’s evolution.
In this way, each channel can represent a network connection with a limited avail-
able bit-rate. This approach was originally proposed in [10] in the context of linear
quadratic Gaussian (LQG) control of stable dynamical systems. In this case, by
sending to the controller a quantized version of the innovation step of the minimum
variance estimator, it was shown that the separation principle between estimation
and control holds, and the optimal controller is a linear function of the state. Hence,
the estimation problem is formally equivalent to the control one. Extensions of this
result to LQG control of unstable systems and to other kind of channel models are
highly dependent on the information pattern available to the sender and receiver and
are explored in [26, 27, 56, 66]. In particular, when channel errors make the en-
decoder uncertain of what the decoder received, the optimal controller is in general
nonlinear [56], a result reminiscent of Witsenhausen’s famous counter example [67].

1.3 The Data-Rate Theorem

For unstable systems under the bit-pipe communication model, when the control
objective is to keep the state of the system bounded, or asymptotically drive it to
zero, the control law is always a linear function of the state, and the central issue is
to characterize the ability to perform a reliable estimate of the state at the receiving
end of the communication channel. The central result in this case is the data-rate
theorem. Loosely speaking, this states that the information rate r supported by the
channel to keep the system stable must be large enough compared to the unstable
modes of the system, so that it can compensate for the expansion of the state during
the communication process. Namely,

r> ZlogMil, (1.2)

11574



6 M. Franceschetti and P. Minero

where the 7/ is the set of indexes of the unstable eigenvalues of the open loop
system and the logarithm is base 2. In the simple setting considered, the result is
oblivious to the presence of two communication channels between the sensor and
the controller and between the controller and the actuator. From the perspective of
the system, the location of the controller is purely nominal. Since the key issue is
communication of a reliable state estimate, the “bottleneck” link determines the ef-
fective data rate of the feedback loop. This intuitive reasoning can easily be made
rigorous [49, Proposition 2.2]. The situation is, of course, different in the presence
of channel uncertainties that, as already mentioned, make the problem highly depen-
dent on the available information pattern at different points in the feedback loop. In
this case, (1.2) should be modified using an appropriate notion of information ca-
pacity available in the feedback loop that depends, as we shall see, on the particular
notion of stability employed, and on the characteristics of the disturbance.

The intuition behind the data-rate theorem is evident by considering the scalar
case of (1.2)

2> Al (1.3)

and noticing that while the squared volume of the state of the open loop system
increases by |A|? at each time step, in closed loop this expansion is compensated
by a factor 272" due to the partitioning induced by the coder providing r bits of in-
formation through the communication channel. By imposing the product to be less
than one, the result follows. Another interpretation arises if one identifies the loga-
rithm of the right-hand side of (1.2) as a measure of the rate at which information is
generated by the unstable plant, then the theorem essentially states that to achieve
stability the channel must transport information as fast as it is produced.

Early incarnations of this fundamental result appeared in [5, 6, 68, 69] where it
was shown that the state of an undisturbed, scalar, unstable plant with mode A can
be kept bounded if and only if the data rate in the feedback loop is at least log ||
bits per unit time. While an improvement of the result from maintaining a bounded
state to obtaining a state that asymptotically approaches zero cannot be achieved
using a fixed quantizer [18], the works [12, 22, 37] showed that this can be obtained
letting the encoder to have memory and using of an adaptive “zoom-in, zoom-out”
strategy that adjusts the range of the quantizer so that it increases as the plant’s state
approaches the target and decreases if the state diverges from the target. This follows
the intuition that in order to drive the state to zero, the quantizer’s resolution should
become higher close to the target.

In the presence of system disturbances, asymptotic stability can only be guar-
anteed within the range of the disturbances. Disturbances of unbounded support
can drive the state arbitrarily far from zero. In this case, it is possible to guarantee
stability only in a weaker, probabilistic sense. The work [65] proved the data-rate
theorem for vector systems affected by unknown, but bounded disturbances, while
the work [49] proved the data-rate theorem under the weaker condition of stochastic
disturbances having unbounded support but a uniformly bounded higher moment,
and using the probabilistic notion of mean-square stability. The work in [72] pro-
vides a related result by characterizing the limit for the second moment of the state
in the infinite time horizon.
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Since n-moment stability requires

sup E(J| Xk [1") < oo, (1.4)
keN

the index n gives an estimate of the quality of the stability attainable: large stabi-
lization errors occur more rarely as 7 increases and in this sense the system is better
stabilized. One interpretation of the results in [49, 65] is that in order to achieve
stability in a strong, almost deterministic sense (7 — 00), one needs to assume al-
most surely bounded disturbances and bounded initial condition; on the other hand,
relaxing the condition on stability to the weaker mean-square sense (7 = 2), one can
use the weaker assumption of bounded higher moments

3e > 0: E(IXol*"*) <00,  supE(|IVill*™) <00,  supE(||Wi[*™) < oo.
keN keN

(1.5)
In short, better stability is guaranteed with better behaved disturbances, while “wild
disturbances” can only guarantee second moment stability.

The strict necessity of the data-rate theorem is proven in the deterministic set-
ting of bounded disturbances by a recursive argument using the Brunn—Minkowski
inequality, which states that the effective radius of the union of two sets is greater
than the sum of their effective radii. In the stochastic setting, it is proven using the
stochastic counterpart of the inequality, namely the entropy power inequality of in-
formation theory which states that the effective variance (entropy power) of the sum
of two independent random variables is greater than the sum of their effective vari-
ances. The similarity between these two tools is well documented in [14]. In the
stochastic case, it is required that the disturbances and the initial state have finite
differential entropy.

The difficulty in proving the sufficiency of the data-rate theorem in the un-
bounded support case is due to the uncertainty about the state that cannot be confined
in any bounded interval. This is overcome by using an adaptive quantizer depicted
in Fig. 1.2 whose number of levels N depends on the rate process and whose reso-
lution exponentially increases near the origin and diverges far from it, so that it can
avoid saturation. The constant £ depends on the statistics of the disturbance and it
is used to recursively split the open semi-infinite intervals on the real axis into two,
while every other finite interval is recursively divided in half. The main idea is then
to divide time into cycles of length t and at the beginning of each cycle quantize the
estimated state using N = 2% ¢ levels. Using this strategy, it can be shown that the
estimated state satisfies a recurrence of the type

2 Y 2
E(1| X | )5c1<22—R> E(IX ¢e-1rll¥) + €2, (1.6)

where c¢; and ¢; are constants. This converges in virtue of (1.2) and by choosing t
large enough. In practice, the strategy allows the system to evolve in open loop for
T time steps and then applies a sufficiently refined control input that makes the state
decrease at an exponential rate higher than the exponential divergence rate of the
system.
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Fig. 1.3 Example of a realization of a stochastic rate channel Ry

1.4 Stochastic Time-Varying Channels

1.4.1 Stochastic Rate Channel

A different set of extensions concern the stochastic variability of the channel de-
picted in Fig. 1.3. This can be a first-order approximation of a wireless communi-
cation channel where the rate varies randomly in a slotted fashion. When the chan-
nel rate varies randomly with time in an independent, identically distributed (i.i.d.)
fashion Ry ~ R and there is causal knowledge of the rate process at both ends of the
communication channel, the data-rate theorem for second moment stability in the
scalar case becomes

IAPEQ272F) < 1. (1.7)

The work [39] proves the result for scalar systems with bounded disturbances and
also provides the extension to n-moment stability

IMTE(27"R) < 1. (1.8)

The intuition that to keep the state bounded it is required to balance the expansion
of the state variable of the unstable system with the contraction provided by the
received information bits still holds. The contraction rate is now a random variable,
whose n-moment trades off the n-power of the unstable mode.

The work [46] proves the result for unbounded disturbances and second moment
stability, and also provides necessary and sufficient conditions for vector systems
that are tight in some special cases. The tools required to prove these results are the
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Fig. 1.4 The binary erasure p
channel

(1-p)

(1-p)

same as the ones described in the previous section. The additional complication due
to the time-varying nature of the channel in the unbounded support case is solved
using the idea of successive refinements. Namely, at the beginning of each cycle of
duration t the quantizer sends an initial estimate of the state using the quantizer
depicted in Fig. 1.2, with a resolution dictated by the current value of the rate. In
the remaining part of the cycle, the initial estimate is refined using the appropriate
quantizer resolution allowed by the channel at each step. The refined state is then
used for control at the end of the cycle. Notice that in this case the number of bits
per cycle is a random variable dependent on the rate process and the mean square of
the state is with respect to both the channel variations and the system disturbances.

The difficulties associated with the vector extension amount to the design of a
bit allocation algorithm that dynamically allocates the available rate to the different
unstable modes of the plant. The work [46] solves the problem using time-sharing
techniques reminiscent of the ones developed in the context of network information
theory for the multiple access channel [19]. Some extensions showing the tightness
of the construction for some specific class of vector systems are provided in [70].

The stochastic rate channel includes the erasure channel as a special case that
corresponds to the rate distribution

P(R=r) =p,
{P(R:O):l—p. (1.9)

This reduces, for r = 1, to the binary erasure channel depicted in Fig. 1.4 and, for
r — 00, to the continuous intermittent channel. We explore these reductions in more
detail in the next section.

In real networks, many channels exhibit correlations over time. When the rate
process follows a two-state Markov chain that corresponds to an erasure channel
with two-state memory called the Gilbert—Elliott channel and depicted in Fig. 1.5,
the data-rate theorem for mean-square stability in the scalar case with unbounded
disturbances becomes [71]

1
r> ElogIE(lMZT), (1.10)

where T is the excursion time of state r. A more general result is provided in [17]
that models the time-varying rate of the channel as an arbitrary time-invariant,
positive-recurrent Markov chain of n states. This allows arbitrary temporal corre-
lations of the channel variations and includes all previous models mentioned above,
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Fig. 1.5 The r-bit erasure p
channel with two-state
memory (Gilbert-Elliott

channel) I-q ‘ ’ I-q

including extensions to the vector case. The technique used to provide this extension
is based on the theory of MJLS.

In the scalar case, it is shown that stabilizing the system is equivalent to stabiliz-
ing

* + 1.11
Tkt = Tk T C (L.11)

where z; € R with zg < 00, ¢ > 0, {Ri}x>0 is the Markov rate process whose evo-
lution through one time step is described by the transition probabilities

pij =P{Ryr1 =rjlRy =1}, (1.12)

for all k e N and i, j € {1, ...,n}. This equivalent MJLS describes the stochastic
evolution of the estimation error ||x; — X || at the decoder, which at every time step
k increases by A because of the system dynamics, and is reduced by 2% because
of the information sent across the channel. A tight condition for second-moment
stability is then expressed in terms of the spectral radius of an augmented matrix
describing the dynamics of the second moment of this MJLS.

Letting H be the n x n matrix with elements

_ Pij
ij= 5o (1.13)
with spectral radius p (H), the data-rate theorem becomes
’ 1
A]f < —— (1.14)

p(H)

A similar approach provides stability conditions for the case of vector systems.
Necessary conditions use the idea of a “genie”-aided proof. First, it is assumed that a
genie helps the channel decoder by stabilizing a subset of the unstable states. Then,
the stability of the reduced vector system is related to the one of a scalar MJLS
whose evolution depends on the remaining unstable modes. By considering all pos-
sible subsets of unstable modes, a family of conditions is obtained that relate the
degree of instability of the system to the parameters governing the rate process. On
the other hand, a sufficient condition for mean-square stability is given using a con-
trol scheme in which each unstable component of the system is quantized using a
separate scalar quantizer. A bit allocation function determines how the bits avail-
able for communication over the Markov feedback channel are distributed among
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the various unstable sub-systems. Given a bit allocation function, the sufficient con-
dition is then given as the intersection of the stability conditions for the scalar jump
linear systems that describe the evolution of the estimation error for each unstable
mode.

The data-rate theorem for general Markovian rates presented in [17] recovers all
results in [39, 46, 49, 65, 71] for constant, i.i.d., or two-state Markov data rates, with
bounded or unbounded disturbances, in the scalar or vector cases. In addition, it also
recovers results for the intermittent continuous channel and for the erasure channel,
as discussed next. We discuss the techniques used to derive the results using the
theory of MJLS in more detail in Sect. 1.6.

1.4.2 Intermittent Channel

The study of the intermittent continuous channel for estimation of the state of a dy-
namical system first initiated in [48]. The study of this channel was boosted in more
recent times by the paper [61] in the context of Kalman filtering with intermittent
observations. This work was inspired by computer networks in which packets can
be dropped randomly and are sufficiently long that can be thought as representing
real, continuous values. The analysis does not involve quantization, but only era-
sures occurring at each time step of the evolution of the system. Hence, the system
in Fig. 1.1 is observed “intermittently”, through an analog, rather than digital chan-
nel, and y in (1.1a), (1.1b) can be lost, with some probability, at each time step k.
Similar to the data-rate theorem, it is of interest to characterize the critical packet
loss probability, defined in [61], above which the mean-square estimation error re-
mains bounded and below which it grows unbounded. This threshold value depends,
once again, on the unstable modes of the system. Extensions providing large devi-
ation bounds on the error covariance and conditions on its weak convergence to a
stationary distribution are given in [47, 59, 62].

The model is easily extended to stabilization and control by considering an in-
termittent continuous channel also between the controller and the actuator. The
work [56] considers LQG control over i.i.d. packet dropping links and shows that in
the presence of acknowledgement of received packets the separation between esti-
mation and control holds and the optimal controller is a linear function of the state.
On the other hand, when there is uncertainty regarding the delivery of the packet,
the optimal control is in general nonlinear. Similar results in the slightly more re-
strictive setting of the system being fully observable and the disturbance affecting
only the system and not the observation, also appear in [32]. The critical role of
the available information pattern on the optimal control is well known [67] and is
further explored for stochastic rate channel models in [66].

The critical packet loss probability for mean-square stabilization is characterized
in [26], under the assumption of i.i.d. erasures, and in [28] in the case of Markov
erasures. The work [21] shows that such critical packet loss probabilities can be
obtained as a solution of a robust control synthesis problem. These results can also
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Fig. 1.6 The discrete
memoryless channel e, PO e,

be obtained from the stochastic rate channel model, considering the erasure channel
in (1.9) and letting r — oo. An easy derivation of the critical packet loss probability
for stabilization is obtained in the scalar case by evaluating the expectation in (1.7),
immediately yielding the result in [26]

Y (1.15)
Similarly, evaluating the condition in [71] for the Gilbert—Elliott channel as r — oo,
one recovers the critical probability for the two-state Markov model of [28]. The
works [17, 46] give matching reductions for the vector case as well. The latter of
these works considers the most general channel model described so far, being an
arbitrary Markov chain of n states, where r can be as low as zero (erasure) and as

high as oo (continuous channel).

1.4.3 Discrete Memoryless Channels

Information theory treats the communication channel as a stochastic system de-
scribed by the conditional probability distribution of the channel output under the
given input. Figure 1.6 gives a visual representation of this information-theoretic
model for the discrete memoryless channel (DMC).

In this context, the Shannon capacity of the channel is the supremum of the
achievable rates of transmissions with an arbitrarily small error probability. It fol-
lows that the erasure channel of bit-rate r described previously is a special case of
the DMC and has Shannon capacity [16]

C=(-pr (1.16)

In the presence of system disturbances, for the erasure channel it follows from (1.7)
that to ensure second moment stability a necessary and sufficient condition is

K221 -p)+p) <l (1.17)

Comparing (1.16) with (1.17), it is evident that the Shannon capacity does not cap-
ture the ability to stabilize the system: not only the left-hand side of (1.17) is differ-
ent from (1.16), but as r — oo the Shannon capacity of the channel grows unbound-
edly, while the data-rate condition for stabilization reduces to (1.15) and critically
depends on the erasure probability. Despite the infinite channel capacity, the system
may be unstable when the erasure probability is high.

The reason for the insufficiency of the of Shannon capacity to characterize the
trade-off between communication and information rate production of a dynamical
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system lies in its operational definition. Roughly speaking, the notion of Shannon
capacity implies that the message is encoded into a finite length codeword that
is then transmitted over the channel. The message is communicated reliably only
asymptotically, as the length of the codeword transmitted over the channel increases.
The probability of decoding the wrong codeword is never zero, but it approaches
zero as the length of the code increases. This asymptotic notion clashes with the
dynamic nature of the system. A very large Shannon capacity can be useless from
the system’s perspective if it cannot be used in time for control. As argued at the
end of Sect. 1.3, the system requires to receive without error a sufficiently refined
control signal every time t that makes the state decrease by a factor exponential
in 7. The ability to receive a control input without error in a given time interval can
be characterized in a classical information-theoretic setting using the notion of error
exponent. However, for the control signal to be effective it must also be appropriate
to the current state of the system. The state depends on the history of whether previ-
ous codewords were decoded correctly or not, since decoding the wrong codeword
implies applying a wrong signal and driving the system away from the stability. In
essence, this problem is an example of interactive communication, where two-way
communication occurs through the feedback loop between the plant and the con-
troller to stabilize the system. Error correcting codes developed in this context have
a natural tree structure representing past history [51, 57] and are natural candidates
to be used for control over channels with errors. They satisfy more stringent reli-
ability constraints than the ones required to achieve Shannon capacity and can be
used, as we shall see in Sect. 1.5, to obtain moment stabilization over the DMC.

Alternative notions of capacity have been proposed to capture the hard reliability
constraints dictated by the control problem. The zero-error capacity Cp was also in-
troduced by Shannon [58] and considers the maximum data rate that can be commu-
nicated over the channel with no error. Assuming that the encoder knows the channel
output perfectly, this notion of capacity can be used to obtain a data-rate theorem
for systems with bounded disturbances with probability one in the form [43]

Coz Y loglhil, (1.18)
11574

where we have used the symbol 2 to indicate that the inequality is strict for the suffi-
cient but not for the necessary condition. It was noted in [43] that even if a feedback
channel from decoder to encoder is not available, in the absence of bounded external
disturbances “virtual feedback” from decoder to encoder can always be established
because the controller affects the plant’s motion in a deterministic way and the sen-
sor observes such motion. The controller can then encode its message depending on
the observed state motion. For this reason, it is customary in the literature to assume
the presence of communication feedback. This assumption is particularly important
in the case of (1.18) because, unlike in the classical Shannon capacity, the zero-error
capacity of the DMC increases in the presence of feedback.

The insufficiency of classical Shannon capacity to describe stabilization with
probability one in the presence of disturbances over erasure channels was first
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pointed out in [41], which led to the zero-error capacity framework of [43]. Unfortu-
nately, the zero-error capacity (with or without feedback) of most practical channels
(including the erasure channel) is zero [36], which implies that unstable systems
cannot keep a bounded state with probability one when controlled over such chan-
nels. In practice, a long sequence of decoding errors always arises with probability
one, and the small unknown disturbances that accumulate in this long time interval
can always drive the system state without bound.

The situation drastically changes for undisturbed systems. In this case, the clas-
sical Shannon capacity C can be used to derive a data-rate theorem with probability
one in the form [42]

c> ZlogMil. (1.19)
iU
This result was proven for the special case of the erasure channel in [64] and in the
more general form for the DMC in [42].

Zero-error capacity and Shannon capacity provide data-rate theorems for plants
with and without disturbances, respectively, over the DMC. They both require the
strong notion of keeping the state bounded with probability one. Another notion of
capacity arises by relaxing the constraint on stabilization with probability one to the
weaker constraint of moment stability (1.4) that we used to describe stabilization
over stochastic rate channels with unbounded system disturbances. In this case, the
data-rate theorem can be written in terms of a parametric notion of channel capacity
called anytime capacity [52]. Consider a system for information transmission that
allows the time for processing the received codeword at the decoder to be infinite,
and improves the reliability as time progresses. More precisely, at each step & in the
evolution of the plant a new message my of r bits is generated that must be sent
over the channel. The coder sends a bit over the channel at each k and the decoder
upon reception of the new bit updates the estimates for all messages up to time k. It
follows that at time k messages

moy, my, ..., Mg
are considered for estimation, while estimates
Ol MKy - - - Pk

are constructed, given all the bits received up to time k. Hence, the processing op-
eration for any message m; continues indefinitely for all £k > i. A reliability level
« is achieved in the given transmission system if for all k£ the probability that there
exists at least one message in the past whose estimate is incorrect decreases o-
exponentially with the number of bits received, namely

P((Moj, - - -, Maix) # (Mo, ..., Mg)) = 0(27*¢)  foralld <k. (1.20)

The described communication system is then characterized by a rate-reliability pair
(r, ). It turns out that the ability to stabilize a dynamical system depends on the
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ability to construct such a communication system, in terms of achievable coding
and decoding schemes, with a given rate-reliability constraints.

Let the supremum of the rate r that can be achieved with reliability « be the
a-anytime capacity C4(«) of a given DMC with channel feedback. The neces-
sary and sufficient condition of the data-rate theorem for n-moment stabilization
of a scalar system with bounded disturbances and in the presence of channel output
feedback is [53]

Ca(nlog|r| +¢) = log|Al. (1.21)

Extensions to vector systems appear in preprint form in [54].

The anytime capacity has been introduced as an intermediate quantity between
the hard notion of zero-error capacity and the soft notion of Shannon capacity. Not
surprisingly, we have

Co=Cala) =C, (1.22)

and in the limiting cases
Ca(0M)=c, C 4(c0) = Cy. (1.23)

Zero-error capacity requires transmission without error. Shannon capacity requires
the decoding error go to zero with the length of the code. In the presence of dis-
turbances, only the zero-error capacity can guarantee the almost sure stability of
the system. The anytime capacity requires transmission with codeword reliability
increasing exponentially in the delay of the single received bit. For scalar systems
in presence of bounded disturbances, it is able to characterize the ability to stabilize
the system in the weaker n-moment sense [53].

Unfortunately, the anytime capacity can be computed only for the special cases
of the erasure channel and the additive white Gaussian noise channel with input
power constraint, and in both of these cases it provides data-rate theorems that can
also be derived directly in a more classical setting. For the r-bit erasure channel with
feedback, we have

ro

Cyla) = . 1.24
A = ol = p)(1 =2 p) 1] (124

Substituting (1.24) into (1.21), we obtain after some algebra
AT - p)+p) S (1.25)

Comparing (1.25) with (1.17), it follows that (1.25) is consistent with the result for
the stochastic rate channel in [17], which, in fact, gives a stronger version of the any-
time capacity data-rate theorem for the case of the erasure channel with feedback,
providing a single (necessary and sufficient) strict inequality condition for second
moment stability. Furthermore, it also extends the result for this particular channel
to disturbances with unbounded support.

For the additive white Gaussian noise channel with input power constraint, the
anytime capacity is independent of the reliability level « and it coincides with the
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Shannon capacity. In this case, the data-rate theorem can be given in terms of signal-
to-noise ratio and available bandwidth [11, 25, 66].

The anytime capacity of more general channel models remains unknown. In ad-
dition, there may be cases in which the output of the noisy channel may not be
available at the encoder and is impracticable to use the plant to signal from the de-
coder to the encoder. In this case, it is only known that the anytime capacity of a
DMC without feedback is lower bounded by the exponent 8 of the error probability
of block codes; namely, for any rate r < C we have

Ca(B(r)log, e)zrlogze. (1.26)

The work [53] proposes an ingenious control scheme to achieve (1.26) based on the
idea of random binning: the observer maps to state using a time-varying randomly
labeled lattice quantizer and outputs a random label for the bin index; the controller,
on the other hand, makes use of the common randomness used to select the random
bin labels to decode the quantized state value. This proof technique, however, only
applies to plants with bounded disturbances.

Despite these shortcomings, the anytime capacity has been influential in the defi-
nition of the reliability constraints for the coding—decoding schemes that can achieve
moment stabilization of linear systems in the presence of bounded disturbances, thus
providing inspiration for further research in coding [13, 51, 60, 63].

1.4.4 Additive Gaussian channels

The additive white Gaussian noise communication channel with power constraint P
is defined as the system

Yk = Xk + ks (1.27)

where zj is the realization of an i.i.d. Gaussian process with zero mean and vari-
ance o2, and the input is constrained by

E(X}) < P, Vk. (1.28)

The Shannon capacity of this channel is perhaps the most notorious formula in in-
formation theory

C=%log(1+P/U2). (1.29)

In this case, the data-rate theorem for second moment stabilization becomes [11, 25]

P
—~ > ]—[ A2 =1, (1.30)
icU



1 Elements of Information Theory for Networked Control Systems 17

that is equivalent to

C> ZlogMil. (1.31)
icU

The work in [11] also shows that stabilization can be achieved, provided (1.31)
holds, using a linear controller with constant gain, if the system’s output sent to the
controller consists of the entire state vector. If the output consists only of a linear
combination of state elements, then the required signal-to-noise ratio for stabiliza-
tion using linear constant feedback exceeds the bound in (1.30), unless the plant is
minimum phase. The work in [25] also shows that (1.31) is also required for sec-
ond moment stability using nonlinear, time-varying control and provides an explicit
lower bound on the second moment of the state that diverges as one approaches
the data-rate capacity threshold. Earlier incarnation of these results go back to [66],
with slightly stronger assumptions on the available information pattern, and to [20]
that connected the recursive capacity-achieving scheme in [55] for the AWGN with
feedback to the stabilization problem of scalar systems over AWGN channels.

Extensions to additive colored Gaussian channels (ACGC) provide additional
connections between the ability to stabilize dynamical systems and the feedback
capacity Cg of the channel. This is defined as the capacity, in Shannon’s sense,
in the presence of an additional noiseless feedback link between the output and
the input of the channel. While for the AWGN channel feedback does not improve
capacity, for ACGC it does improve it. The feedback capacity of the first order
moving average (MA1) additive Gaussian channel has been determined in [33] and
for the general case of stationary ACGC in [34]. The work in [45] exploits the result
in [33] to show that mean-square stabilization of an undisturbed minimum phase
plant with a single unstable pole over a MA1 additive Gaussian channel is possible
if and only if

Cr > log|Al. (1.32)

The work in [3] exploits the result in [34] to show that the feedback capacity of the
general stationary ACGC with power constraint P is

Cr=supU, (1.33)
L
where
U= log|ul (1.34)
174

and L is the set of all undisturbed (vector) linear systems that can be stabilized using
a linear controller over the same additive Gaussian channel, with power constraint

1 T

- T (/) Sz(w)dw < P, (1.35)
-
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Table 1.1 Summary of data-rate theorems for stabilization over noisy channels

Condition Channel Stabilization Disturbance
czU DMC a.s. 0

CozU DMC a.s. bounded
Ca(nlog|ir|) = nlog || DMC n-moment bounded
AP A-p)+p) <1 Erasure 2nd moment unbounded
C>U AWGN n-moment unbounded
Cr=supU ACGN 2nd moment 0

where S;(w) is the power spectral density of the noise, and T is the complementary
sensitivity function of the system. This result shows that the maximum “tolerable in-
stability” U of an LTI system with a given power constraint P, controlled by a linear
controller over a general stationary Gaussian channel, corresponds to the feedback
capacity of that channel subject to the same power constraint P. Hence, there is a
natural duality between feedback stabilization and communication over the Gaus-
sian channel. This duality can also be exploited to construct efficient communication
schemes over the Gaussian channel with feedback in the context of network infor-
mation theory, using control tools. This theme was first explored in [20] and later
expanded in [4].
We provide a summary of the results for different noisy channels Table 1.1.

1.5 Error Correcting Codes for Control

Independent of research in stabilization and control, error correcting codes with
exponential reliability constraints in the form of (1.20) were introduced in the con-
text of interactive communication [57]. These codes possess a natural tree structure
that can be used to maintain synchronization between the controller and system
when communication occurs over noisy channels. Although it is not known whether
tree codes are anytime capacity achieving, they can be used for stabilization of net-
worked control systems when their rate-reliability parameters fall within a region
needed for stabilization of the given system. We motivate them with the following
example.
Consider the problem of tracking a scalar unstable process with dynamics

Xkl = Axg + vy, (1.36)

with A > 1. The initial condition and the additive disturbance are supposed to be
random but bounded, i.e., |Xo| <« and | V| < B for some ¢, B < 0o. We consider
the setup where a coder having access to the state communicates over a binary noisy
channel to a decoder that wishes to track the state of the system. The objective is to
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design a coder—decoder pair such that

supE(| Xk — Xkl?) < o0. (1.37)
k

If the communication channel is noiseless and allows transmission without errors
of r bits per unit of time, then we obtain the usual data-rate theorem in the form
(1.3). The strategy used for estimation follows the one described in [65]. Let Uy =
[—a, +a] denote the set containing the initial condition xg. At time k = 0, the coder
and the decoder partition Uy into 2" intervals Up(1), ..., Up(2") of equal size. The
coder communicates to the decoder the index m of the interval Uy(mg) containing
the state, so the decoder can form a state estimate xo as the midpoint of Uy (my).
This construction implies

|xo — Xo| < 27"

for any xo € Up. Also, notice that x; is contained inside the set U := Aldy(mo) +
[—B, + 8], where the sum denotes the Minkowski sum of sets. This means that the
same scheme can be used at time k = 1 to estimate the state x;. Specifically, the
coder and the decoder partition the set U into 2" intervals U;(1),...,U;(2") of
equal size, the coder transmits the index m of the subinterval containing the state,
and the decoder sets x; equal to the midpoint of U (m1), so that

lx; —X1| <@r2™2 4+ p27".

By iterating the same procedure k times, at time k the coder and the decoder agree
that x; belongs to a set Uy := Aldy—1(mr—1) + [—B, +B]. Then, the coder sends
over the channel the index my of the subinterval Uy (my) € Uy containing xj and the
decoder forms an estimate x; as the midpoint of the uncertainty interval Uy (my). It
can be shown by induction that

k—1
e — Tl < (A277) a2+ g2 S (a2
=0

It follows that a sufficient condition for the estimation error at the decoder to remain
bounded for all k coincides with (1.3).

Consider now the case of a noisy channel in which synchronism between coder
and decoder can be lost in the event that the sequence my, ..., my is not correctly
decoded at the estimator. To prevent this, at every time k a channel encoder maps
the sequence my, ..., my into an r-bit channel input sequence fi (mo, ..., my) that
is transmitted over the channel. A channel decoder maps the received channel bits
up to time k into an estimate #ig, . . ., Hig )k for the input sequence, which, in turn,
is used to form the state estimate X as the midpoint of the interval Uy (7itx)x) which
is formed by recursively partitioning AU; (771 j i) + [—B, Bl, j =0, ...,k — 1, into
2" intervals.

If the index of the first wrong estimate at the decoder is k — d, that is, if
nA10|k =mg,..., mk—d—1|k =myj_q—1 and rfim_d|k # mpy—4, then the error between
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the estimators at coder and decoder is
¥ — &l = O(2%), (1.38)

because the difference between the two estimates at time k — d is amplified by A
at each iteration due to the expansion of the state process. It follows that the mean-
square estimation error can be upper bounded as

E(1Xk — Xk?) < 2E(1Xk — Xkl?) + 2E(1 Xk — Xil?)
)\'2]( k—1 ”
=0(W+Zpd,kx ) (1.39)
d=0
where

Py = P{M0|k = Moy, ..., Mk—d—uk = Mi_q-1, Mk—d\k # Mg},

denotes the probability that the index of the first wrong estimate at time k is k — d,
d=0,1,..., k. Observe that (1.39) is obtained by separately bounding two terms,
the first of which represents the mean-square estimation error under the assumption
that the channel is noise free, that goes to zero if (1.3) is satisfied, while the second
denotes the mean-square error between the estimator xj available at the encoder
and the estimator X available at the decoder, and is bounded provided P, ; decays
fast enough as d grows. It follows that a sufficient condition for second moment
stabilization is given by

r = log|Al, (1.40a)
Py = 0220k 0d)  forall d <k, (1.40b)

that corresponds to the sufficient condition given in (1.21) in terms of anytime ca-
pacity.

1.5.1 Tree Codes

The reliability condition imposed by (1.40a), (1.40b) is amenable to the following
visual interpretation. First, notice that the coding—decoding scheme can be visual-
ized on a tree of depth k, as depicted in Fig. 1.7, where the nodes at level i denote the
uncertainty intervals {/; (1), ...,U;(2"), while the label on each branch denotes the
r-bit sequence transmitted over the channel at each time instant. The codeword asso-
ciated to a given path in the tree is given by the concatenation of the branch symbols
along that path. The sequence my, . .., my determines the path in the tree followed
up to time k by the encoder, while 7o, . .., iy determines the path followed by the
decoder. Then, (1.40a), (1.40b) implies that the uncertainty at the controller about
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he

f(1,1) f(1,27) f2(2",2")

C c’

Fig. 1.7 Binary tree visualizing the evolution of the uncertainty set containing the initial condition.
The coding—decoding scheme described in Sect. 1.5 can be visualized on this tree by labeling each
branch with the symbols sent over the channel. The codeword associated to a given path is given
by the concatenation of the branch symbols along that path

the path followed in the binary tree must decrease exponentially at rate 2(log |A| +€)
with the distance d from the bottom of the tree.

Tree codes and their maximum likelihood analysis were first introduced in [23],
but finding explicit deterministic constructions of codes achieving a given rate-
reliability pair (7, ) is still an important open problem. The work [57] applied the
random coding argument in [23] to prove the existence of codes within a specific
(r, @) region. The codes introduced in [57] are defined by the property that the Ham-
ming distance between any two codewords associated with distinct paths of equal
depth in the binary tree is proportional to the height from the bottom of the tree of the
least common ancestor between the two paths. For example, the Hamming distance
between the codewords C and C’ illustrated in Fig. 1.7 should be proportional to /.
This property on the minimum distance translates into different guarantees on the
reliability of the code depending on the communication channel. The preprint [63]
proves the existence with high probability of linear (r,a) tree codes, i.e., codes
where the channel input sequence fi(mo, ..., my) transmitted over the channel at
time k is a linear function of my, ..., mg. The (r, @) region of existence obtained
in [63] is currently the largest known region of existence. An important open prob-
lem is to show the existence of (possibly nonlinear) (2log |A|)-reliable codes for
any rate r greater than log |X|. This result would show that tree codes are anytime-
capacity achieving and therefore they are both necessary and sufficient for moment
stabilization of unstable scalar systems over noisy channels.

The argument in [57] relies on the probabilistic method and only ensures the
existence of tree codes, not their explicit construction. A new class of codes with
explicit constructions that are computationally efficient have been presented in [51],
but they exhibit weaker reliability constraints that are only useful for stabilization
of plants whose state space grows polynomially with time. The preprint [63] offers
an explicit construction for the binary erasure channel that does not require causal
knowledge of the erasure process, as it was assumed to derive the data-rate theorem
in [17].

It is important to emphasize that explicit constructions require coding and de-
coding operations to be computationally efficient. One could, in principle, consider
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using traditional convolutional codes developed in the context of wireless communi-
cation to stabilize dynamical systems [38]. These codes perform “on-line” encoding
and decoding in which the estimate of the received message is refined as more bits
are received within the constraint length window of the code. The constraint length
is analogous to the block length of traditional block codes, but it allows incremen-
tal, on-line refinement of the received message estimate at the decoder. The error
probability decreases exponentially with the constraint length of the code, thus pro-
viding the required reliability constraint. Unfortunately, the complexity of the con-
struction increases with the constraint length and computationally efficient convolu-
tional codes only exist for small constraint lengths. Convolutional codes are heavily
used in mobile phones, where occasional errors translate in call drops or audio dis-
turbances. In control applications, however, the accumulation of errors over long
time periods resulting from finite constraint lengths would make them unsuitable
for practical implementations as they would drive the system to instability.

1.6 Stochastic Time-Varying Rate: An In-Depth Look

We now provide a more rigorous treatment of the data-rate theorem for stochas-
tic time-varying rate channels, with the objective of illustrating recently developed
techniques based on the theory of MJILS that can be used to derive many of the
results available in the literature. We follow the approach developed in [17]; how-
ever, we consider here the special case of a scalar system in which there are only
system disturbances and no observation disturbances. This allows presenting sim-
plified proofs that are considerably shorter, more easily accessible, and better suited
to grasp the main ideas behind them.
Consider the special case of a scalar system with state feedback

Xk41 = AXg + ug + v, (1.41a)
Yk = Xk, (1.41b)

where k =0, 1, ... and |A| > 1, and suppose that the following assumptions hold:

Assumption 1.1 The initial condition X and the plant disturbance Vi, k > 0, are
zero mean and have continuous probability density functions of finite differential
entropy, so there exists a constant 8 > 0 such that 2 (Vi) > B for all k.

Assumption 1.2 The initial condition X and the plant disturbance Vi, k > 0, have
uniformly bounded (2 + ¢)th moments so there exists a constant & < oo such that
E(|Vi|?>T¢) < « for all k.

We also assume that the sensor measurements y; are transmitted from the state
observer to the actuator over a noiseless digital communication link that at each time
k allows transmission without errors of ry bits. The rate sequence rg, rq, ... is the
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realization of a stochastic process Rj, Ra, ..., that is modeled as a homogeneous
positive-recurrent Markov chain taking values in a finite subset of the nonnegative
integers

Rz{fla'-wfn}s

and whose evolution through one time step is described by the transition probabili-
ties (1.12), i.e.,

pij =P{Riy1 =7j|Ry =Ti}

for all k e N and i, j € {1,...,n}. The rate process is independent of the other
quantities describing the system and is causally known at observer and controller.

At each time k, a coding function (coder) s; = sx(yo, ..., yx) maps all past and
present measurements into the set {1,...,2}. The digital link is mathematically
modeled as the identity function on the set {1, ...,2"%}, so the symbols s; are reli-
ably transmitted without distortion. The received channel outputs are transformed
by a decoding function (decoder) u; = x¢(so, ..., Sx) that maps all past and present
symbols sent over the digital link into a control input uj that is sent to the plant.

The problem is to find conditions on the rate process and the system parameters
to ensure stability of the closed loop system. We adopt the probabilistic notion of
mean-square stability and require that

supE[|X¢]*] < oo, (1.42)
k

where the expectation is taken with respect to the rate process, the initial condition,
and the plant disturbance.

‘We now proceed to establish necessary and sufficient conditions for mean-square
stability of the scalar linear system (1.41a), (1.41a).

Theorem 1.1 Let H be the n x n matrix with nonnegative real elements

1
/’l,'j = ﬁpﬁ (1.43)

forall 1 <i,j <n.If Assumption 1.1 holds, then (1.41a), (1.41b) is mean-square
stable only if
1
< —.
p(H)
Conversely, if Assumption 1.2 holds, then there exists a coder—decoder pair that
stabilizes (1.41a), (1.41b) is mean-square sense if (1.44) is satisfied.

A (1.44)

If both Assumptions 1.1 and 1.2 hold, then Theorem (1.1) asserts that condi-
tion (1.44) is both necessary and sufficient to ensure mean-square stability. Appli-
cation of Theorem 1.1 yields the following results as special cases.
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Constant rate. When the channel supports a constant rate, i.e., the rate process is
identically equal to 7 at all times, the matrix H is equal to 1/2%" and thus (1.44)
reduces to

7 > log|Al, (1.45)

which is the condition given by the data-rate theorem in its basic formulation. It
should be remarked that here 7 is restricted to be an integer, but this assumption
can be relaxed by taking the approach followed in [49, 65], where the rate pro-
cess is allowed to vary deterministically and 7 is defined as the infinite horizon
time-average of the process.

Independent rate process. Consider the special case of an independent rate pro-
cess where each random variable Ry in the rate process is identically distributed
as a random variable R with probability mass function p; =P{R =r;}, r; € R.
It can be easily seen that in this case H reduces to a rank-one matrix with only
one nonzero eigenvalue equal to Y _, p; |A|>2%"i. Therefore, (1.44) special-
izes to

n
IMPo(H) =" pila?2~ 2
i=1

=E(A*27%F) < 1. (1.46)

The necessity and sufficiency of (1.46) for mean-square stability in this setting
was established in [46]. This condition is also a special case of a result in [39],
where it is established under the assumption of bounded disturbances that nec-
essary and sufficient condition for nth moment stability, i.e., boundedness of the
nth moment of the plant, is E(|A|"27"%) < 1.

Two-state Markov process. Consider the special case of a rate process that ran-
domly switches between two different states, state r; and 7, and where the
transition probabilities from 7 to 7, and from 7, to | are denoted by p and ¢,
respectively. In this case, it is possible to relate the spectral radius of H to its de-
terminant det(H) and its trace tr(H ). Specifically, the condition in Theorem 1.1
reduces to

2
% (tr(H) + Vr(H)? — 4det(H)) < 1. (1.47)
Erasure Channel. Another special case that has been studied in the literature is
the case of an erasure channel, which is further specialization of the two-state
Markov process described above in the case where r; = 0, 7, = 7. Necessary
and sufficient conditions for mean-square stability under this channel model
were established in [71], for the Markovian case, and in [46, 52] in the special
case of independent rate process. If we further specialize to the case where
r — 00, then (1.47) recovers a result that was first established in [26].
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1.6.1 Necessity

The following lemma states that if Assumption 1.1 is satisfied, then the second mo-
ment of the state in (1.41a), (1.41b) is lower bounded by the first moment of a MJLS
whose dynamics depends on the Markov rate process {R;} and on the constant S
defined in Assumption 1.1.

Lemma 1.1 Let Assumption 1.1 hold. Then, for every k =0, 1, ... the second mo-
ment of Xy satisfies

1
E(|Xkl?) > T EZ0),

where {Z}} is a non-homogeneous MILS with dynamics zo = ¢*"*0) and

2

Tkt = w+pB, k=0,1,.... (1.48)

22Rk

Proof Let S¥ = {8y, ..., Si} denote the symbols transmitted over the digital link up
to time k. By the law of total expectation and the maximum entropy theorem [19],
we have

E(1Xx411%) ZP YE(IXk41 1218% = 5¥)
_ i 2 P{S k}elnzneE(|xk+1|2|sk=sk)
Zne Z P ln2neh(Xk+1|Sk=sk)
= 5 Eg (e k9'=0), (1.49)
where the summation is over s; € S := U, {1, ...,2%}, 0 <i < k. It follows that

the second moment of the state is lower bounded by the average entropy power of
X} conditional on S*. From the translation invariance property of the differential en-
tropy, the conditional version of entropy power inequality [19], and Assumption 1.1,
it follows that

Eg (e2h(Xk+1 |Sk:sk>) =Egq (e2h<xxk+fc<sk>+vk|Sk=sk>)
>Eg (eZh()LXHSk:sk)) + 2hw0)

> |\PEg (e2MXHIS'=) 4 g, (1.50)
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We can further lower bound (1.50) making use of a result proved in [46, 49], which
states that for every time k > 0, k=1 ¢ Sk_l, andr e R

_ _ k_ k 1 k—1_ k-1
ZP{S":sk]Sk I gk 1,Rk=r}e2h(xk|5 ‘Y)zﬁeZh(Xk\S s,
Sk

(1.51)
where S_1 := (). By the tower rule of conditional expectation, it then follows that

Eg (ezh(Xk|S":sk)) > Eg1 g, <22LRkeZh(X"Sk1:Skl)> . (1.52)

Combining (1.52) and (1.50) gives

E (ezhoml \sk=sk>)

>| |)‘|2 E ( 2h(Xk|Sk71:Sk71) (1 53)
= IR, —22Rk Skflle e ) +,B .

Following similar steps and using the Markov chain S¥~! — (§¥=2 R,_1) = Ry,
we obtain

2h(Xi|SE1=sk=T)
]Eskflle (6‘ )

k—1_ k—1
Z |)\‘|2Esk*1|Rk (e2h(Xk_]\S =S )) +,B

|)»|2 (X1 | Sk—2mgh—2
= ESk_Z‘Rk,HRk <22Rk1 e (Xk—1l S ) + ﬂ
A2 (X1 2=5E2)
=Ereiire | S2m Est2imeiri (€ ))+8. (1.54)

Substituting (1.54) into (1.53) and re-iterating k times, it follows that
o (ezmxm NED )

4
(A 2(X k—2_ k=2
k=118777=5""7)
ZEre .k, (22(Rk1+Rk) T C )

A4
sofen()

2% 2h(X1 |Sp=
2 Bg,.... Rk(mEle ,,,,, Ry (e21X11S0=50))

K |3 [2k=i+D)
+8 1+ZER1,~..,Rk(m) (1.55)
j=2
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k 2k—j+1)
224D 2h(Xo) |A[= Y
_E(m O\ 1 LB e ) ) 099
J:

where (1.55) uses the fact that the initial condition of the state X is independent of
the rate process Ry. By taking the expectation on both sides of (1.48) and iterating k
times, it is easy to see that the right hand side of (1.56) is the first moment of the non-
homogeneous MJLS zj41 with dynamics given in (1.48). Hence, combining (1.53)—
(1.56), we conclude that E(|X|?) > #]E(Zk), which is the claim. O

Lemma 1.1 shows that the state cannot be mean-square stable if the average of the
{Zi} process is unbounded. Next, we establish that (1.44) is a necessary condition
for the first-moment stability of {Z;}. For every k > 0, let pug,; = E[Zx1{g,=7}]
denote the expectation of Z; in the event that the rate at time k is 7;. Since Zy41 —
Ry — Rjy41 form a Markov chain, the following recursion holds for every 1 <1,
Jj<n:

n 2 n
Al _
M1, ZZﬁpijﬂk,i +B) pijPIR =7}, k=0,1,....

i=1 i=1

It follows that the vector px = ((k 1, -- -, uk,n)T € R" evolves over time according
to the linear system

i1 = MPH we + b, k=0,1,..., (1.57)

where H is the transition probability matrix defined in (1.43) and by € R” is a vector
with jthelement equalto 8 7, pij P{Rx = 7;}. Notice that p(IA2H) < 1is anec-
essary condition to ensure that the linear system (1.57) is stable, i.e., supy [|[ukll1 <
00. On the other hand, by the law of total probability, E(Zx) = Y "'_; ux.i = Ikl
and so the plant is mean-square stable only if sup;, ||k |l1 < oo. This establishes
that (1.44) is a necessary condition for the second moment stability of the plant.

1.6.2 Sufficiency

Consider now the system (1.41a), (1.41b) and suppose that Assumption 1.2 is satis-
fied. In this section, we build a coder—decoder pair that stabilizes the system under
the assumption that (1.44) holds. We first describe the adaptive quantizer that is at
the base of the constructive scheme. This is based on the construction given in [49].

Adaptive Quantizer For any r > 2, the quantizer g, proposed in [49] induces the
following partition of the real line:

o The set [—1, 1] is_ divided into'2’ -1 intervals of the same length;'
e Thesets (£172, 171 and (—&/~!, —£1=2] are divided into 2"~ intervals of the
same length, foreachi € {2,...,r — 1};
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e The leftmost and rightmost intervals are the semi-open sets (—oo, —&” 2] and

(£772, 00).

A sketch of the quantizer for r = 4 is depicted in Fig. 1.2. Here § > 1 is a parameter
that determines the concentration of intervals around the origin. We can see that the
width of the quantization regions increases with &, so the partition becomes more
spread out as £ increases. Given a real number x, the output value of the quantizer
gr(x) is the midpoint of the interval in the partition containing x. In the sequel,
we will also make use of the function «, (x), which instead returns the half-length
of such interval, such that the quantization error is bounded by «,(x). If x is in
one of the two semi-open sets at the two extremes of the partition, then we set
qr(x) =sign(x)§” and k, (x) =" — &'\,

A fundamental property of this construction is that, loosely speaking, the esti-
mation error produced by the mapping g, decays exponentially fast . The precise
statement of this property involves a functional that was first introduced in [49]. For
any pair of random variables (X, L), where L > 0, let

X, L|:= \/E[Lz +|X[>teL=e]. (1.58)

In [29], it is shown that the non-negative functional || X, L| is a pseudo-norm in the
space of random vectors (X, L) € R x R and satisfies the following properties:

(i) Second moment bound:
E(1X[?) < ldX,dL|>*. (1.59)
(i1) Positive homogeneity: For any d > 0
ldX,dL|| =d| X, L]|. (1.60)
(iii) Triangle inequality: For any X1, X» € Rand L1, Ly >0,
X1+ X2, L1 + Lol < 1 X1, L1l + [ X2, La|l. (1.61)

Lemma 5.2 in [49] proves that if £ > 2%/¢, then the average quantization error pro-
duced by ¢, satisfies

-t (7)1 (3)

for some constant ¢ > 0 only determined by ¢ and &.

Another important property of this quantizer is that it is successively refinable.
Observe in fact that the partition of the r-bit quantizer can be obtained recursively
from the one of the (r — 1)-bit quantizer by dividing each bounded interval into
two intervals of the same length and the two semi-open intervals into two inter-
vals each. In particular, the interval (§" -2 o0) is divided into the bounded interval
("2, "1 and the semi-open interval ("1, 00), and similarly for the interval

2

¢
< ﬁnx,an, (1.62)
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(—o00, —&" ~2]. Thus, qr+r (x) can be computed recursively starting from g, (x) by
repeating the above procedure r’ times. We will make use of this property in our
control scheme, where we use the fact that if coder and decoder know g, (x) at time
k, then the coder can communicate to the decoder gy, (x) by sending r bits
at time k + 1.

The stabilizing scheme can be described as follows. Coder and decoder share at
each time k a state estimator Xy that is recursively updated using the symbols sent
over the digital link. Time is divided into cycles of fixed duration t. At the beginning
of each cycle, the coder sends a scaled version of the estimation error that is quan-
tized at a resolution dictated by the current value of the rate. In the remaining part
of the cycle, the coder sends refinements of the original transmission at a resolution
determined by the rate process at each step. At the end of each cycle, the decoder
updates the state estimator and sends a control signal to the plant. The scaling factor
that is applied to the error prior to quantization is updated at the end of each cycle.
The basic idea is to adjust the range of the quantizer as in the zoom-in zoom-out
strategy proposed in [37, 69]: the range is increased (zoom-out phase) when atypi-
cally large disturbances affect the system, and decreased as the state reduces its size
(zoom-in phase). Next, the coder and decoder are described in detail.

Coder At the beginning of the jth cycle, i.e., at time jt, the coder computes
Grye (e = 2j0)/ 1), (1.63)

where [; is the scaling factor updated at the beginning of each cycle, and com-
municates to the decoder the index s;; € {1,...,2"7} of the quantization interval
containing the scaled estimation error. At time jt + 1, coder and decoder divide
the quantization interval into 2"J7+! subintervals according to the recursive proce-
dure described above. The coder sets s;.41 € {1, ...,2"/7+1} equal to the subinterval
containing (xj; — X;¢)/[;, so the decoder can compute

Arjc+rjcst ((xjf - ijf)/lj)'

By repeating the same procedure for the rest of the cycle, at time (j + 1)t — 1 the
decoder knows (x;; — X;¢)/1; at the resolution provided by a quantizer with

r(j)=rjc+- - +rg+ne-1

bits. Before the beginning of the next cycle, coder and decoder compute

R R i — &
x(jmf:xr(xj-ﬁzjqru)(—”ﬁ ’)) (1.64)
j
and
Xjr —Xj
li =max{(p, erler(j)(%)}, (1.65)
J

with X9 = 0, lo = ¢, where ¢ is any constant that only depends on ¢.
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Decoder At every time k the decoder sends to the plant the control signal

uk:{_)\'xk lfk:r72r7"" (166)

0 otherwise,
where X j is updated as in (1.64) at the beginning of each cycle.

Analysis First, we prove that if (1.44) holds, then the second moment of the mean-
squared estimation error at the beginning of each cycle is bounded. The following
lemma shows that E(|X ;; — )A(jf 1) is lower bounded by the second moment of a
MILS whose dynamics depends on the Markov rate process {R;} and on the con-
stants o and ¢ defined in Assumption 1.2.

Lemma 1.2 ALet Assumption 1.2 hold. Then, for every k =0, 1, ..., the estimation
error X j; — X j; satisfies

E(1X)r — Xjel?) <E(Z7,).
where {Z j:} is a non-homogeneous MJLS with dynamics

~ A" -
Z(j+1)r—¢m2jr+§7 j=0,1,..., (1.67)

for some constants zg > 0, ¢ > 1, and ¢ > 0 that are only determined by ¢, T, and «.

Proof Let ej; =xj; — X denote the estimation error at the beginning each cycle.
By (1.59) and the fact that scaling factor L ; updated by coder and controller at the
end of each cycle is nonnegative,

E(1EG+1e?) < 1EG+1yes Listil? (1.68)

Notice from (1.65) that

X — %
lip1 < |)»|rleR(j)(7jr - ”) +o,
J

and that by iteration of (1.41a), (1.41b) and (1.64) for t time steps

o
e(j+hr = |)L|T(€jr _leIR(j)<%)> +nj,
J

where n; := 21:01 AT_I_ivj,+i. Thus, properties (1.60) and (1.61) yield

Ej Xir— X2\ |?
Ejr — LﬂR(j)(—] ) LjKR(j><—
L; L;j

+2|Hj, o> (1.69)

IEG+1yes Ljsall> < 21A1F
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Notice that || H}, ¢|1? is upper bounded by a constant ¢ that only depends on ¢, ,
and «.
Let

0 =B((L] +1Ej P Li*) Ry =), i€R.
Combining (1.62) and (1.69) and making use of the law of total probability,

|)\’|2T
Oj+1,i. =2¢ Z( Z iy ttr, ) Pl Pieriic 0}.i
io

T1yeeeyiz—1
+ ¢?P{R(j11)r =11, }, (1.70)

which provides a recursive formula for the 6; ; subsequences.
Next, we claim that, for every j > 0,

Oj+1i E]E[Z(2j+1)‘[1{R(j+l)r=ri}]’ ri €R, (L.71)
where the process {Z;} is formed recursively from zo = 6y as

A"

mZﬁ‘f‘g’ j=1, (1.72)

(j+r =@
where ¢ = 4/2¢ > 1. To see this, consider the following inductive argument. By
construction zo = 6y, hence the claim holds for k = 0. Now, suppose that the claim

is true up to time j. Then, for any ;. € R,

2
E[Z(j+1)fl{R(j+l)f:Vir}]
I)\'|r 2
=k 2{mzﬁ +¢ ) URg11ye=ri)

T ’ 2
2E<< X SRR 20t ) MRgene=rie) | + 67 PARGne =i}

2
-2 Z [\ Tpio iy Pir_y,ir ]E[Z2 ]+ ZP{R ' )
=2 22(r,0+ i) {Rjc=riy} S G+t =VTi,

i0y-nsir—1

|)»|27: 5
= 2§ Z 22(”104‘ +rz )pl() i " pir_l,ifej,i() + g P{R(]+1)T - rif}

[Q5eeesiz—1

>0+l

where the first inequality follows from the fact that (a 4+ b)*> > a? + b* for all
nonnegative numbers a and b, the second inequality uses the induction hypothe-
sis, while the last inequality uses (1.70). Hence, the claim holds at time k + 1 as
well.
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Summing both sides of (1.71) over r; € R and making use of (1.68), it follows
that E(Efr) < ]E(Z?r), as claimed. O

Lemma 1.2 shows that the mean-squared estimation error at the beginning of
each cycle if finite if the process {Z;} is mean-square stable. Next, we establish
that (1.44) is a sufficient condition for the second-moment stability {Z;}. Let okzi =

]E[Z,%l{ R.=r}] denote the second moment of Z; in the event that the rate at time &

takes value 7;. Making use of the fact that (a + b)? < 2(a? + b?), it can be verified
that the vector ak2 = (0,31, e, olin)T € R” satisfies

ol <207 M HT of + 267, k=0,1,..., (1.73)

where H is the transition probability matrix defined in (1.43) and ¢ € R” is a
vector with the ith component equal to ¢ P{Ry = r;}. A sufficient condition for the
recursion in (1.73) to be bounded is

20% (1A p(H))" < 1. (1.74)

Since by the law of total probability E(|Z |,%) <>, 0,& ;= ||<7k2 I, it follows
that (1.74) is a sufficient condition for Z; to be mean-square stable. On the other
hand, if the condition of Theorem 1.1 is satisfied, that is, if |*|2p(H) < 1, then we
can choose the duration of a cycle t large enough to ensure that (1.74) holds and, as
a consequence, the second moment of the estimation error at the beginning of each
cycle is bounded. Notice that the choice of a larger t translates into larger oscilla-
tions of the system state because, according to our quantization scheme, the system
evolves in open loop during a cycle.

Finally, for any i =1, ..., 7 — 1, the triangle inequality implies that |x;;1;| <
M Ixje = Xl + 3h_o 1A 7K [vj744], so the state remain bounded at all times.
This establishes that (1.44) is a sufficient condition for the second moment stability
of the plant.

1.7 Conclusion

Understanding the operational mechanism of feedback loops over limited data-rate
communication channels will be of outmost importance in the near future, as cyber-
physical systems (CPS) continue to impact our society more broadly. This requires
the development of a rigorous theory of information transmission for control sys-
tems. This theory must identify the trade-offs between the amount of information
that can be communicated through the control loop and the ability of achieving the
required control objectives.

In the past decade, a number of results appeared in the literature, but much re-
mains to be done. Obtained results show that the control objective is fundamentally
limited by both the channel noise and the intrinsic system noise that affects the plant
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in the form of external disturbances. For channels that allow transmission of a given
number of bits without error, the “quality” of the achievable stabilization in terms of
moment constraints depends on the corresponding constraints on the noise process
disturbances. Loosely speaking, better stability can only be guaranteed with better
behaved disturbances, while “wild disturbances” can only guarantee lower moment
stability. In all cases, the region where the system can be stabilized is clearly demar-
cated by a data-rate theorem relating the amount of instability of the system to the
available communication rate.

For noisy channels, the quality of the stabilization depends on the notion of chan-
nel capacity employed. Zero-error capacity, guaranteeing reliable transmission with-
out error, allows for almost sure stabilization. Shannon capacity, guaranteeing reli-
able transmission with error that decays to zero asymptotically, allows for almost
sure stabilization only for systems without disturbances. The parametric notion of
anytime capacity, with communication reliability stronger than Shannon’s capac-
ity, but weaker than zero-error capacity, can be used to characterize stabilization of
disturbed systems in a moment sense. Again, the region where the system can be
stabilized is determined by a data-rate theorem written using the appropriate notion
of capacity.

For limited rate channels, the theory of MJLS provides a general framework that
can be used to develop data-rate theorems characterizing necessary and sufficient
conditions for stabilization that hold in a variety of cases, including for the erasure
channel, and for the continuous intermittent channel, with or without memory. On
the other hand, the study of the DMC with memory in the context of control remains
an important open problem.

Beside the formulation of data-rate theorems for different channels and noise
models, a field open for further research is error correcting codes for automatic
control over noisy channels. For the Gaussian channel, uncoded transmission is suf-
ficient to achieve stabilization when the Shannon capacity is above the threshold
dictated by the data-rate theorem, but for the DMC stabilization requires develop-
ment of error correcting codes with specific rate-reliability constraints dictated by
the corresponding data-rate theorem. These constructions are, at present, largely un-
known, although recent advancements in tree codes for the erasure channel appear
promising.

We conclude this chapter by mentioning some open problems. As remarked in
Sect. 1.4, tight conditions for moment stability of a vector system over a time-
varying bit pipe link are not known, in general. Even in the simple setting where
the process on the feedback link is an i.i.d. process, only partial results are avail-
able. All existing works on stability of linear systems under stochastic disturbance
of unbounded support focus on the restrictive notion of second-moment stabil-
ity [17, 46, 49, 70, 71]. The generalization to n-moment stability, which is cur-
rently known only in the case where the disturbance is bounded [39, 53], is an
open problem. Similarly, most of the existing works assume a perfect channel from
the controller to the actuator. The case where both the sensor—controller and the
controller—actuator channels are noisy was studied in [73], which provides condi-
tions for second moment stability using Markov stability theory. In general, how-
ever, it is not known when the criteria summarized in this chapter continue to hold
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after replacing the relevant notion of capacity with the capacity of the bottleneck
channel. Our previous work [46] has revealed a connection between stabilization
over the intermittent continuous channel and the rate-limited channel. It would be
of interest to establish a similar connection in the case of optimal control over finite—
capacity channels. Previous works [26, 56] have considered the LQG problem under
the network-theoretic approach where packets can be lost, while [9, 31, 40] studied
the same problem under the assumption that the feedback channel is a bit pipe with
constant rate R. In order to create a connection between these two lines of work,
one would have to formulate an LQG problem over a time-varying bit pipe channel
whose rate oscillates independently over time between 0 and R. As a final remark,
notice that the proof techniques used in [53] only apply to plants with bounded
disturbances. A question that requires further investigation is to extend the result in
[53] to the case of noise with infinite support. A possible approach based on variable
rate coding is outlined in [52, 73].

As control systems gradually evolve towards usage of wireless platforms, the
developed theory will have a direct applicability in a practical setting. The move
towards wireless is dictated by both technological advancements and economic fac-
tors, as the cost of “wiring” large CPS can easily dominate development costs. The
theory developed so far has shown that existing error correcting codes for wireless
communication are not immediately applicable in the context of control, due to their
soft reliability constraints that are not sufficient to ensure even low-moment stabil-
ity for safety critical applications. In the next decades, we will witness a refinement
of the theory to gain additional understanding of fundamental limitations, as well
as the development of new communication schemes needed to address the growing
industrial need for control over noisy channels.
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