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Abstract—This paper considers the following network computa-
tion problem: � nodes are placed on a

�
���� grid, each node is

connected to every other node within distance ���� of itself, and it
is assigned an arbitrary input bit. Nodes communicate with their
neighbors and a designated sink node computes a function � of
the input bits, where � is either the identity or a symmetric func-
tion. We first consider a model where links are interference and
noise-free, suitable for modeling wired networks. Then, we con-
sider a model suitable for wireless networks. Due to interference,
only nodes which do not share neighbors are allowed to transmit
simultaneously, and when a node transmits a bit, all of its neigh-
bors receive an independent noisy copy of the bit. We present lower
bounds on the minimum number of transmissions and on the min-
imum number of time slots required to compute � . We also de-
scribe efficient schemes that match both of these lower bounds up
to a constant factor and are thus jointly (near) optimal with respect
to the number of transmissions and the number of time slots re-
quired for computation. At the end of the paper, we extend results
on symmetric functions to general network topologies, and obtain a
corollary that answers an open question posed by El Gamal in 1987
regarding the computation of the parity function over ring and tree
networks.

Index Terms—Communication complexity, error correction,
function computation, information theory, sensor networks.

I. INTRODUCTION

S ENSOR networks consist of a large number of small nodes,
capable of sensing, processing, and communicating data.

These networks are typically required to sample a field of in-
terest, do “in-network” computations, and then communicate a
relevant summary of the data to a designated node(s), most often
a function of the raw sensor measurements. For example, in en-
vironmental monitoring a relevant function can be the average
temperature in a region. Another example is an intrusion de-
tection network, where a node switches its value from 0 to 1
if it detects an intrusion and the function to be computed is the
maximum of all the node values. For schemes that perform such
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in-network aggregation, two relevant measures of complexity
are the latency, i.e., the time it takes to perform the computa-
tion, and the corresponding energy spent.

Network computation has been studied extensively in the lit-
erature, under a wide variety of models. In wired networks with
point-to-point noiseless communication links, computation has
been traditionally studied in the context of communication com-
plexity [1]. Wireless networks, on the other hand, have three
distinguishing features: the inherent broadcast medium, inter-
ference, and noise. Due to the broadcast nature of the medium,
when a node transmits a message, all of its neighbors receive it.
Due to noise, the received message at each neighbor is a noisy
copy of the transmitted one. Due to interference, simultaneous
transmissions can lead to message collisions. To avoid inter-
ference, a simple protocol model introduced in [2] allows only
nodes which do not share neighbors to transmit simultaneously.
The works in [3]–[5] study computation restricted to the pro-
tocol model of operation and assuming noiseless transmissions.
A noisy communication model over independent binary sym-
metric channels was proposed in [6] in which when a node trans-
mits a bit, all of its neighbors receive an independent noisy copy
of the bit. Using this model, the works in [7]–[9] consider com-
putation in a complete network where each node is connected to
every other node and only one node is allowed to transmit at any
given time. An alternative to the complete network is the random
geometric network in which nodes are randomly deployed in
continuous space inside a square and each node can
communicate with all other nodes within a range1 . Compu-
tation in such networks under the protocol model of operation
and with noisy communication has been studied in [10]–[13]. In
these works the connection radius is assumed to be of order2

, which is the threshold required to obtain a con-
nected random geometric network, see [14, Chapter 3].

In this paper, we consider the class of grid geometric networks
in which every node in a grid is connected to every
other node within distance from it, see Fig. 1. This construc-
tion has many useful features. By varying the connection ra-
dius we can study a broad variety of networks with contrasting
structural properties, ranging from the sparsely connected grid
network for to the densely connected complete network

1The connection radius � can be a function of �, but we suppress this depen-
dence in the notation for ease of exposition.

2Throughout the paper we use the following subset of the Bachman-Landau
notation for positive functions of the natural numbers: ���� � ������� as
��� if �� � �, � � � � � � ���� � �����; ���� � ������� as ��
� if ���� � �������; ���� � ������� as � � � if ���� � �������
and ���� � �������. The intuition is that � is asymptotically bounded up to
constant factors from above, below, or both, by �.
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Fig. 1. Network� ��� ��: each node is connected to all nodes within distance
�. The (red) node � is the sink that has to compute a function � of the input.

when . This provides intuition about how network
properties like the average node degree impact the cost of com-
putation. Above the critical connectivity radius for the random
geometric network , the grid geometric network
has structural properties similar to its random geometric coun-
terpart and all the results in this paper also hold in that scenario.
Thus, our study includes the two network structures studied in
previous works as special cases. At the end of the paper, we
also present some extensions of our results to arbitrary network
topologies.

We consider both noiseless wired communication over binary
channels and noisy wireless communication over binary sym-
metric channels using the protocol model. We focus on com-
puting two specific classes of functions with binary inputs, and
measure the latency by the number of time slots it takes to com-
pute the function and the energy cost by the total number of
transmissions made in the network. The identity function (i.e.,
recover all source bits) is of interest because it can be used to
compute any other function and thus gives a baseline to com-
pare with when considering other functions. The class of sym-
metric functions includes all functions such that for any input

and permutation on

In other words, the value of the function only depends on the
arithmetic sum of the arguments, i.e., . Many functions
which are useful in the context of sensor networks are sym-
metric, for example the average, maximum, majority, and parity.

A. Statement of Results

Under the communication models described above, and for
any connection radius , we prove lower bounds
on the latency and on the number of transmissions required for
computing the identity function (Theorems III.1 and IV.1). We
then describe a scheme which matches these bounds up to a
constant factor (Theorems III.2 and IV.2). Next, we consider
the class of symmetric functions. For a particular symmetric
function (parity function), we provide lower bounds on the la-
tency and on the number of transmissions for computing the
function (Theorems III.3 and IV.3). We then present a scheme

which can compute any symmetric function while matching the
above bounds up to a constant factor (Theorems III.4 and IV.6).
These results are summarized in Tables I and II. They illus-
trate the effect of the average node degree on the cost
of computation under both communication models. By com-
paring the results for the identity function and symmetric func-
tions, we can also quantify the gains in performance that can
be achieved by using in-network aggregation for computation,
rather than collecting all the data and performing the computa-
tion at the sink node. Finally, we extend our schemes for com-
puting symmetric functions to more general network topologies
(Theorem V.1) and obtain a lower bound on the number of trans-
missions required for arbitrary connected networks (Theorem
V.2). A corollary of this result answers an open question origi-
nally posed by El Gamal in [6] regarding the computation of the
parity function over ring and tree networks.

We point out that most of previous work ignored the issue of
latency and it is only concerned with minimizing the number
of transmissions required for computation. Our schemes are
latency-optimal, in addition to being efficient in terms of the
number of transmissions required. The works in [5], [11]
consider the question of latency, but only for the case of

.

B. Organization of the Paper

The rest of the paper is organized as follows. We formally
describe the problem and present some preliminary remarks in
Section II. Grid geometric networks with noiseless links are
considered in Section III and their noisy counterparts are studied
in Section IV. Extensions to general network topologies are pre-
sented in Section V. In Section VI we draw conclusions and
mention some open problems.

II. PROBLEM FORMULATION

A network of nodes is represented by an undirected
graph. Nodes in the network represent communication devices
and edges represent communication links. For each node , let

denote its set of neighbors. Each node is assigned an
input bit . Let denote the vector whose compo-
nent is . We refer to as the input to the network. The nodes
communicate with each other so that a designated sink node
can compute a target function of the input bits

where denotes the co-domain of . Time is divided into slots
of unit duration. The communication models are as follows.

• Noiseless point-to-point model: If a node transmits a bit
on an edge in a time slot, then node receives the
bit without any error in the same slot. All the edges in
the network can be used simultaneously, i.e., there is no
interference.

• Noisy broadcast model: If a node transmits a bit in time
slot , then each neighboring node in receives an in-
dependent noisy copy of in the same slot. More precisely,
neighbor receives where denotes the
modulo-2 sum. is a bernoulli random variable that
takes value 1 with probability and 0 with probability .
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TABLE I
RESULTS FOR NOISELESS GRID GEOMETRIC NETWORKS

TABLE II
RESULTS FOR NOISY GRID GEOMETRIC NETWORKS

The noise bits are independent over , , and . A net-
work in the noisy broadcast model with link error proba-
bility is called an -noise network. We restrict to the pro-
tocol model of operation, namely two nodes and can
transmit in the same time slot only if they do not have any
common neighbors, i.e., . Thus, any node
can receive at most one bit in a time slot. In the protocol
model originally introduced in [2], communication is reli-
able. In our case, even if bits do not collide at the receiver
because of the protocol model of operation, there is still a
probability of error which models the inherent noise in
the wireless communication medium.

A scheme for computing a target function specifies the
order in which nodes in the network transmit and the proce-
dure for each node to decide what to transmit in its turn. A
scheme is defined by the total number of time slots of its
execution, and for each slot , by a collection
of simultaneously transmitting nodes and
the corresponding encoding functions . In
any time slot , node computes the func-

tion of its input bit and the
bits it received before time and then transmits this value.
In the noiseless point-to-point case, nodes in the list are
repeated for each distinct edge on which they transmit in a
given slot. After the rounds of communication, the sink
node computes an estimate of the value of the func-
tion . Note that the duration of a scheme and the total
number of transmissions are constants for all inputs

.
Our definition of a computing scheme has a number of de-

sirable properties. First, schemes are oblivious in the sense that
in any time slot, the node which transmits is decided ahead
of time and does not depend on a particular execution of the
scheme. Without this property, the noise in the network may
lead to multiple nodes transmitting at the same time, thereby
causing collisions and violating the protocol model. Second,
the definition rules out communication by silence: when it is
a node’s turn to transmit, it must send something.

We call a scheme a -error scheme for computing if for
any input , . For both the
noiseless and noisy broadcast communication models, our ob-
jective is to characterize the minimum number of time slots

and the minimum number of transmissions required by any
-error scheme for computing a target function in a network
. We first focus on grid geometric networks of connection ra-

dius , denoted by , and then extend our results to more
general network topologies.

A. Preliminaries

We now present a few useful observations.

Remark II.1: For any connection radius , every node
in the grid geometric network is isolated, and hence,
computation is infeasible. On the other hand, for any ,
the network is fully connected. Thus, the interesting
regime is when the connection radius .

Remark II.2: For any connection radius ,
every node in the grid geometric network has
neighbors.

Theorem II.3: (Gallager’s Coding Theorem), [10, Page 3,
Theorem 2], [15]: For any and any integer , there
exists a code for sending an -bit message over a binary sym-
metric channel using transmissions such that the message
is received correctly with probability at least .

III. NOISELESS GRID GEOMETRIC NETWORKS

We begin by considering computation of the identity func-
tion. We have the following straightforward lower bound.

Theorem III.1: Let be the identity function, let ,
and let . Any -error scheme for computing over

requires at least time slots and
transmissions.

Proof: To compute the identity function the sink node
should receive at least bits. Since has neigh-
bors and can receive at most one bit on each edge in a time slot,
it will require at least time slots to compute the iden-
tity function.

Let a cut be any set of edges separating at least one node from
the sink . It is easy to verify that there exists a collection of

disjoint cuts such that each cut separates nodes
from the sink , see Fig. 2 for an example. Thus, to ensure that

can compute the identity function, there should be at least
transmissions across each cut. The lower bound on the

total number of transmissions follows.

We now present a simple scheme for computing the iden-
tity function which is order-optimal in both the latency and the
number of transmissions.
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Fig. 2. Each dashed (magenta) line represents a cut of network� ��� �� which
separates at least ��� nodes from the sink � . Since the cuts are separated by
a distance of at least ��, the edges in any two cuts, denoted by the solid (blue)
lines, are disjoint.

Fig. 3. Scheme for computing the identity function works in three phases: the
solid (blue) lines depict the first horizontal aggregation phase, the dashed (ma-
genta) lines denote the second vertical aggregation phase, and the dotted (red)
lines represent the final phase of downloading data to the sink.

Theorem III.2: Let be the identity function and let
. There exists a zero-error scheme for computing

over which requires at most time slots and
transmissions.

Proof: Let . Consider a partition of the net-
work into cells of size , see Fig. 3. Note that
each node is connected to all nodes in its own cell as well as
in any neighboring cell. The scheme works in three phases, see
Fig. 3. In the first phase, bits are horizontally aggregated towards
the left-most column of cells along parallel linear chains. In the
second phase, the bits in the left-most cells are vertically aggre-
gated towards the nodes in the cell containing the sink node .
In the final phase, all the bits are collected at the sink node.

The first phase has bits aggregating along parallel
linear chains each of length . By pipelining the trans-
missions, this phase requires time slots and a total

of transmissions in the network. Since each
node in the left-most column of cells has bits and
there are parallel chains each of length , the
second phase uses transmissions and
in time slots. In the final phase, each of the

nodes in the cell with has bits, and hence,
it requires transmissions and slots to finish.
Adding the costs, the scheme can compute the identity function
with transmissions and time slots.

Now we consider the computation of symmetric functions.
We have the following straightforward lower bound:

Theorem III.3: Let and let .
There exists a symmetric target function such that any
-error scheme for computing over requires at least

time slots and transmissions.
Proof: Let be the parity function. To compute this func-

tion, each non-sink node in the network should transmit at least
once. Hence, at least transmissions are required. Since
the bit of the farthest node requires at least time slots
to reach , we have the desired lower bound on the latency of
any scheme.

Next, we present a matching upper bound.

Theorem III.4: Let be any symmetric function and let
. There exists a zero-error scheme for computing over
which requires at most time slots and

transmissions.
Proof: We present a scheme which can compute the arith-

metic sum of the input bits over in at most
time slots and transmissions. This suffices to prove the
result since is symmetric, and thus, its value only depends on
the arithmetic sum of the input bits.

Again, consider a partition of the noiseless network
into cells of size with . For each cell, pick one
node arbitrarily and call it the “cell-center”. For the cell con-
taining , choose to be the cell-center. The scheme works
in two phases, see Fig. 4.

First Phase: All the nodes in a cell transmit their input bits
to the cell-center. This phase requires only one time-slot and
transmissions and at the end of the phase each cell-center knows
the arithmetic sum of the input bits in its cell, which is an ele-
ment of .

Second Phase: In this phase, the bits at the cell-centers are
aggregated so that can compute the arithmetic sum of all the
input bits in the network. There are two cases, depending on the
connection radius .

• : Since each cell-center is connected to the
other cell-centers in its neighboring cells, this phase can
be mapped to computing the arithmetic sum over the noise-
less network where each node observes a
message in . See Fig. 4(a) for an illustra-
tion. In Appendix I we present a scheme to complete this
phase using transmissions and time
slots.

• : The messages at cell-centers are aggre-
gated towards along a tree, see Fig. 4(b). The value at
each cell-center can be viewed as a -length binary
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Fig. 4. Figures ��� and ��� represent the cases � � �� ���� and � �
�
� ���� respectively. The scheme for computing any symmetric function works in two

phases: the solid (blue) lines indicate the first phase which is the same in both cases. The second phase differs in the two cases. It is represented by the dashed
(magenta) lines in Fig. ��� and the dashed (red) lines in Fig. ���.

vector. To transmit its vector to the parent (cell-center)
node in the tree, every leaf node (in parallel) transmits each
bit of the vector to a distinct node in the parent cell. In the
next time slot, each of these intermediate nodes relays its
received bit to the corresponding cell-center. The parent
cell-center can then reconstruct the message and aggregate
it with its own value to form another -length binary
vector. Note that it requires two time slots and
transmissions by a cell-center to traverse one level of
depth in the aggregation tree. This step is performed re-
peatedly (in succession) till the sink node receives the
sum of all the input bits in the network. Since the depth
of the aggregation tree is , the phase requires

time slots. There are transmissions in
each cell of the network. Hence, the phase requires a total
of transmissions.

Adding the costs of the two phases, we conclude that it is
possible to compute any symmetric function using trans-
missions and time slots.

IV. NOISY GRID GEOMETRIC NETWORKS

We start by considering the computation of the identity func-
tion. We have the following lower bound.

Theorem IV.1: Let be the identity function. Let
, let , and let . Any -error

scheme for computing over an -noise grid geometric network
requires at least time

slots and transmissions.
Proof: The lower bound of transmissions fol-

lows from the same argument as in the proof of Theorem III.1.
The other lower bound of transmissions follows
from [8, Corollary 2].

We now turn to the number of time slots required. For com-
puting the identity function, the sink node should receive at
least bits. However, the sink can receive at most one bit

in any slot, and hence, any scheme for computing the identity
function requires at least time slots. For the remaining
lower bound, consider a partition of the network into
cells of size with . Since the total number
of transmissions in the network is at least and
there are cells, there is at least one cell where the
number of transmissions is at least . Since all
nodes in a cell are connected to each other, at most one of them
can transmit in a slot. Thus, any scheme for computing the iden-
tity function requires at least time slots.

Next, we present an efficient scheme for computing the iden-
tity function in noisy broadcast networks, which matches the
above bounds.

Theorem IV.2: Let be the identity function. Let
, let , and let .

There exists a -error scheme for computing over an
-noise grid geometric network which requires

at most time slots and
transmissions.

Proof: Consider the usual partition of the network
into cells of size with . By the protocol model of
operation any two nodes are allowed to transmit in the same time
slot only if they do not have any common neighbors. In line with
the protocol model of operation, cells are scheduled according
to the scheme shown in Fig. 5. Thus, each cell is scheduled
once every 7 7 time slots. Within a cell, at most one node can
transmit in any given time slot and nodes take turns to transmit
one after the other. For each cell, pick one node arbitrarily and
call it the “cell-center”. The scheme works in three phases, see
Fig. 6.

First Phase: There are two different cases, depending on the
connection radius .

• : In this case, each node in its turn transmits
its input bit to the corresponding cell-center using a code-
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Fig. 5. Cells with the same number (and color) can be active in the same time
slot and different numbers (colors) activate one after the other. Each cell is active
once in 49 slots.

Fig. 6. Scheme for computing the identity function in a noisy network involves
three phases: the solid (blue) lines indicate the first in-cell aggregation phase,
the dashed (magenta) lines represent the second horizontal aggregation phase,
and the dotted (red) lines represent the final vertical aggregation phase.

word of length such that the cell-center decodes
the message correctly with probability at least .
The existence of such a code is guaranteed by Theorem
II.3. This phase requires at most time slots
and at most transmissions in the network. Since
there are cells in the network, the probability
that the computation fails in at least one cell is bounded
by .

• : In this case, each cell uses the more sophis-
ticated scheme described in [8, Section 7] for recovering
all the input messages from the cell at the cell-center. This
scheme requires at most time slots and a
total of at most transmissions in
the network. At the end of the scheme, a cell-center has all
the input messages from its cell with probability of error

at most . Since there are at most cells in
the network for this case, the probability that the computa-
tion fails in at least one cell is bounded by .

Thus, at the end of the first phase, all cell-centers in the net-
work have the input bits of the nodes in their cells with proba-
bility at least .

Second Phase: In this phase, the messages collected at the
cell-centers are aggregated horizontally towards the left-most
cells, see Fig. 6. Note that there are horizontal chains
and each cell-center has input messages. In each such
chain, the rightmost cell-center maps its set of messages into
a codeword of length and transmits it to the next
cell-center in the horizontal chain. The receiving cell-center
decodes the incoming codeword, appends its own input mes-
sages, re-encodes it into a codeword of length , and
then transmits it to the next cell-center, and so on. This phase
requires at most time slots and a total of
at most transmissions in the network. From
Theorem II.3, this step can be executed without error with
probability at least .

Third Phase: In the final phase, the messages at the cell-cen-
ters of the left-most column are aggregated vertically towards
the sink node , see Fig. 6. Each cell-center maps its set of input
messages into a codeword of length and transmits it
to the next cell-center in the chain. The receiving cell-center de-
codes the incoming message, re-encodes it, and then transmits
it to the next node, and so on. By pipelining the transmissions,
this phase requires at most time slots and
at most transmissions in the network. This
phase can also be executed without error with probability at least

.
It now follows that at the end of the three phases, the sink

node can compute the identity function with probability of
error at most . Thus, for large enough, we have
a -error scheme for computing any symmetric function in the
network . Adding the costs of the phases, the scheme
requires at most time slots and

transmissions.

We now discuss the computation of symmetric functions in
noisy broadcast networks. We begin with a lower bound on the
latency and the number of transmissions required.

Theorem IV.3: Let , let , and let
for any . There exists a symmetric

target function such that any -error scheme for computing
over an -noise grid geometric network requires

at least time slots and
transmissions.

We briefly describe the idea of the proof before delving
into details. Let be the parity function. First, we notice that
[12, Theorem 1.1, page 1057] immediately implies that any
-error scheme for computing over requires at least

transmissions. So, we only need to establish that
any such scheme also requires transmissions.

Suppose there exists a -error scheme for computing the
parity function in an -noise grid geometric network
which requires transmissions. In Lemma IV.5, we translate
the given scheme into a new scheme operating on a “noisy
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Fig. 7. �-noisy star network.

star” network (see Fig. 7) whose noise parameter depends on
, such that the probability of error for the new scheme

is also at most . In Lemma IV.4, we derive a lower bound on
the probability of error of the scheme in terms of the noise
parameter of the noisy star network. Combining these results
we obtain the desired lower bound on the number of transmis-
sions . We remark that while the proof of the lower bound
in [12, Theorem 1.1, page 1057] operates a transformation to
a problem over “noisy decision trees”, here we need to trans-
form the problem into one over a noisy star network. Hence, the
two different transformations lead to different lower bounds on
the number of transmissions required for computation.

An -noisy star network consists of input nodes and one
auxiliary node . Each of the input nodes is connected di-
rectly to via a noisy link, see Fig. 7. We have the following
result for any scheme which computes the parity function in an

-noisy star network:

Lemma IV.4: Consider an -noisy star network with noise
parameter and let the input be distributed uniformly over

. For any scheme which computes the parity func-
tion (on bits) in the network and in which each input node
transmits its input bit only once, the probability of error is at
least .

Proof: See Appendix II-A.

We have the following lemma relating the original network
and a noisy star network.

Lemma IV.5: Let . If there is a -error scheme
for computing the parity function (on input bits) in
with transmissions, then there is a -error scheme for com-
puting the parity function (on input bits) in an -noisy star
network with noise parameter , with each input node
transmitting its input bit only once.

Proof: See in Appendix II-B.

We are now ready to complete the proof of Theorem IV.3.
Proof (of Theorem IV.3): Let . If there is a

-error scheme for computing the parity function in
which requires transmissions, then by combining Lemmas
IV.5 and IV.4, the following inequalities must hold:

(1)

where follows since for every . Thus, we
have that any -error scheme for computing the parity function
in an -noise network requires at least
transmissions.

We now consider the lower bound on the number of time
slots. Since the message of the farthest node requires at least

time slots to reach , we have the corresponding
lower bound on the duration of any -error scheme. The lower
bound of time slots follows from the same ar-
gument as in the proof of Theorem IV.1.

We now present an efficient scheme for computing any sym-
metric function in a noisy broadcast network which matches the
above lower bounds.

Theorem IV.6: Let be any symmetric function. Let
, let , and let .

There exists a -error scheme for computing over an
-noise grid geometric network which requires

at most time slots and
transmissions.

Proof: We present a scheme which can compute the arith-
metic sum of the input bits over . Note that this suffices
to prove the result since is symmetric, and thus, its value only
depends on the arithmetic sum of the input bits.

Consider the usual partition of the network into cells
of size with . For each cell, we pick one node ar-
bitrarily and call it the “cell-center”. As before, cells are sched-
uled according to Fig. 5 to prevent interference between simul-
taneous transmissions. The scheme works in three phases.

First Phase: The objective of the first phase is to ensure that
each cell-center computes the arithmetic sum of the input mes-
sages from the corresponding cell. Depending on the connection
radius , this is achieved using two different strategies.

• : In Appendix III, we describe a
scheme which can compute the partial sums at all cell-
centers with probability at least and requires

total transmissions and time
slots.

• : In this case, we first divide each
cell into smaller sub-cells with nodes
each, see Fig. 8. Each sub-cell has an arbitrarily chosen
“head” node. In each sub-cell, we use the Intracell scheme
from [10, Section III] to compute the sum of the input
bits from the sub-cell at the corresponding head node.
This requires transmissions from each node
in the sub-cell. Since there are nodes in each cell
and only one node in a cell can transmit in a time slot,
this step requires time slots and a total of

transmissions in the network. The proba-
bility that the computation fails in at least one sub-cell is
bounded by .

Next, each head node encodes the sum of the input bits
from its sub-cell into a codeword of length and
transmits it to the corresponding cell-center. This step requires
a total of transmissions in the network and

time slots and can be performed also with
probability of error at most .

The received values are aggregated so that at the end of
the first phase, all cell-centers know the sum of their input
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Fig. 8. Each cell in the network� ��� �� is divided into sub-cells. Every sub-
cell has a “head”, denoted by a yellow node. The sum of input messages from
each sub-cell is obtained at its head node, depicted by the solid (blue) lines.
These partial sums are then aggregated at the cell-center. The latter step is rep-
resented by the dashed (magenta) lines.

bits in their cell with probability at least . The
phase requires transmissions in the network and

time slots to complete.
Second Phase: In this phase, the partial sums stored at the

cell-centers are aggregated along a tree (see for example, Fig. 6)
so that the sink node can compute the sum of all the input bits
in the network. We have the following two cases, depending on
the connection radius .

• : For this regime, our aggregation
scheme is similar to the Intercell scheme in [10, Section
III]. Each cell-center encodes its message into a codeword
of length . Each leaf node in the aggregation
tree sends its codeword to the parent node which decodes
the message, sums it with its own message and then
re-encodes it into a codeword of length . The
process continues till the sink node receives the sum
of all the input bits in the network. From Theorem II.3,
this phase carries a probability of error at most . It
requires transmissions in the network and

time slots.
• : In this regime, the above simple ag-

gregation scheme does not match the lower bound for the
latency in Theorem IV.3. A more sophisticated aggrega-
tion scheme is presented in [11, Section V], which uses
ideas from [16] to efficiently simulate a scheme for noise-
less networks in noisy networks. The phase carries a prob-
ability of error at most . It requires
transmissions in the network and time slots.

Combining the two phases, the above scheme can com-
pute any symmetric function with probability of error at most

. Thus, for large enough, we have a -error scheme for
computing any symmetric function in the network . It
requires at most time slots
and transmissions.

Fig. 9. Cell � is composed of �� � smaller cells from the previous
level in the hierarchy. Each of the cell-centers � (denoted by the green nodes)
holds the sum of the input bits in the corresponding cell � . These partial sums
are aggregated along the minimum Steiner tree � (denoted by the brown
bold lines) so that the cell-center � (denoted by the blue node) can compute
the sum of all the input bits in � .

V. GENERAL NETWORK TOPOLOGIES

In the previous sections, we focused on grid geometric net-
works for their suitable regularity properties and for ease of ex-
position. The extension to random geometric networks in the
continuum plane when is immediate, and we
focus here on extensions to more general topologies. First, we
discuss extensions of our schemes for computing symmetric
functions and then present a generalized lower bound on the
number of transmissions required to compute symmetric func-
tions in arbitrary connected networks.

A. Computing Symmetric Functions in Noiseless Networks

One of the key components for efficiently computing sym-
metric functions in noiseless networks in Theorem III.4 was the
hierarchical scheme proposed for computing the arithmetic sum
function in the grid geometric network . The main idea
behind the scheme was to consider successively coarser parti-
tions of the network and at any given level aggregate the partial
sum of the input messages in each individual cell of the partition
using results from the finer partition in the previous level of the
hierarchy. Using this idea we extend the hierarchical scheme to
any connected noiseless network and derive an upper bound
on the number of transmissions required for the scheme. Let
each node in the network start with an input bit and denote
the set of nodes by . The scheme is defined by the following
parameters:

• The number of levels .
• For each level , a partition of the

set of nodes in the network into disjoint cells such that
each where , i.e.,
each cell is composed of one or more cells from the next
lower level in the hierarchy. See Fig. 9 for an illustration.
Here, and .

• For each cell , a designated cell-center . Let
be the designated sink node .

• For each cell , let denote a Steiner tree with the min-
imum number of edges which connects the corresponding
cell-center with all the cell-centers of its component cells
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, i.e., the set of nodes . Let denote

the number of edges in .
Using the above definitions, the hierarchical scheme from

Theorem III.4 can now be easily extended to general network
topologies. We start with the first level in the hierarchy and then
proceed recursively. At any given level, we compute the partial
sums of the input messages in each individual cell of the parti-
tion at the corresponding cell-center by aggregating the results
from the previous level along the minimum Steiner tree. It is
easy to verify that after the final level in the scheme, the sink
node possesses the arithmetic sum of all the input messages
in the network . The total number of transmissions made by
the scheme is at most

Thus, we have a scheme for computing the arithmetic sum func-
tion in any arbitrary connected network. In the proof of Theorem
III.4, the above bound is evaluated for the grid geometric net-
work with , , ,

, and is shown to be .

B. Computing Symmetric Functions in Noisy Networks

We generalize the scheme in Theorem IV.6 for computing
symmetric functions in a noisy grid geometric network
to a more general class of network topologies and derive a cor-
responding upper bound on the number of transmissions re-
quired. The original scheme consists of two phases: an intracell
phase where the network is partitioned into smaller cells, each
of which is a clique, and partial sums are computed in each in-
dividual cell; and an intercell phase where the partial sums in
cells are aggregated to compute the arithmetic sum of all input
messages at the sink node. We extend the above idea to more
general topologies. First, for any , consider the following
definition:

Clique-cover property : a network of nodes is
said to satisfy the clique-cover property if the set of nodes

is covered by at most cliques, each of size at most
.

For example, a grid geometric network with
satisfies for . On

the other hand, a tree network satisfies only for .
Note that any connected network satisfies property . By
regarding each disjoint clique in the network as a cell, we can
easily extend the analysis in Theorem IV.6 to get the following
result, whose proof is omitted.

Theorem V.1: Let , , and be any
connected network of nodes with . For , if

satisfies , then there exists a -error scheme for com-
puting any symmetric function over which requires at most

transmissions.

C. A Generalized Lower Bound for Symmetric Functions

The proof techniques that we use to obtain lower bounds are
also applicable to more general network topologies. Recall that

denotes the set of neighbors for any node . For any net-
work, define the average degree as

A slight modification to the proof of Theorem IV.3 leads to the
following result:

Theorem V.2: Let and let . There exists
a symmetric target function such that any -error scheme for
computing over any connected network of nodes with av-
erage degree , requires at least transmissions.

Proof: Let be the parity function. The only difficulty in
adapting the proof of Theorem IV.3 arises from the node degree
not being necessarily the same for all the nodes. We circumvent
this problem as follows: in addition to decomposing the network
into the set of source nodes and auxiliary nodes , such that

for , as in the proof of Lemma IV.5 (see
Appendix II-B); we also let every source node with degree more
than be an auxiliary node. There can be at most of such
nodes in the network since the average degree is . Thus, we
obtain an decomposition of the network such
that each source node has degree at most . The rest of the
proof then follows in the same way.

As an application of the above result, we have the following
lower bound for ring or tree networks.

Corollary V.3: Let be the parity function, let ,
and let . Any -error scheme for computing over
any ring or tree network of nodes requires at least
transmissions.

The above result answers an open question, posed originally
by El Gamal [6].

VI. CONCLUSION

We conclude with some observations and directions for future
work.

A. Target Functions

We considered all symmetric functions as a single class and
presented a worst-case characterization (up to a constant) of the
number of transmissions and time slots required for computing
this class of functions. A natural question to ask is whether it
is possible to obtain better performance if one restricts to a par-
ticular sub-class of symmetric functions. For example, two sub-
classes of symmetric functions are considered in [3]: type-sensi-
tive and type-threshold. Since the parity function is a type-sen-
sitive function, the characterization for noiseless networks in
Theorems III.3 and III.4, as well as noisy broadcast networks in
Theorems IV.3 and IV.6 also holds for the restricted sub-class
of type-sensitive functions. A similar general characterization is
not possible for type-threshold functions since the trivial func-
tion ( for all ) is also in this class and it requires
no transmissions and time slots to compute. The following re-
sult, whose proof follows similar lines as the results in previous

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on February 22,2020 at 01:43:18 UTC from IEEE Xplore.  Restrictions apply. 



7680 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

sections and is omitted, characterizes the number of transmis-
sions and the number of time slots required for computing the
maximum function, which is an example type-threshold func-
tion. This can be compared with the corresponding results for
the whole class of symmetric functions in Theorems IV.3 and
IV.6.

Theorem VI.1: Let be the maximum function. Let
, , and . Any

-error scheme for computing over an -noise network
requires at least time

slots and transmissions. Fur-
ther, there exists a -error scheme for computing which
requires at most time slots and

transmissions.

B. On the Role of and

Throughout the paper, the channel error parameter and the
threshold on the probability of error are given constants. It is
also interesting to study how the cost of computation depends
on these parameters. The careful reader might have noticed that
our proposed schemes also work when only an upper bound on
the channel error parameter is considered, and always achieve
a probability of error that is either zero or tends to zero as

. It is also clear that the cost of computation should de-
crease with smaller values of and increase with smaller values
of . Indeed, from (1) in the proof of Theorem IV.3, we see that
the lower bound on the number of transmissions required for
computing the parity function depends on as . On
the other hand, from the proof of Theorem IV.6 the upper bound
on the number of transmissions required to compute any sym-
metric function depends on as . The two
expressions are close for small values of .

C. Network Models

We assumed that each node in the network has a single
bit value. Our results can be immediately adapted to obtain
upper bounds on the latency and the number of transmissions
required for the more general scenario where each node
observes a block of input messages with each

, . However, finding matching lower
bounds seems to be more challenging.

APPENDIX I
COMPUTING THE ARITHMETIC SUM OVER

Consider a noiseless network where each node has
an input message . We present a scheme
which can compute the arithmetic sum of the input messages
over the network in time slots and using

transmissions. We briefly present the main idea
of the scheme before delving into details. Our scheme divides
the network into small cells and computes the sum of the input
messages in each individual cell at designated cell-centers. We
then proceed recursively and in each iteration we double the size
of the cells into which the network is partitioned and compute
the partial sums by aggregating the computed values from the
previous round. This process finally yields the arithmetic sum
of all the input messages in the network.

Fig. 10. � is a square cell of size���. This figure illustrates some notation
with regards to � .

Before we describe the scheme, we define some notation.
Consider an square cell in the network, see Fig. 10. De-
note this cell by and the node in the lower-left corner of
by . For any which is a power of 2, , can
be divided into 4 smaller cells, each of size . Denote

these cells by .

Without loss of generality, let be a power of 4. The scheme
has the following steps:

1) Let .
2) Consider the partition of the network into cells

each of size , see Fig. 11.

Note that each cell consists of exactly four cells

, see Fig. 12. Each corner node ,
, 2, 3, 4 possesses the sum of the input messages

corresponding to the nodes in the cell .

The partial sums stored at , , 2, 3, 4 are

aggregated at the node , along the tree shown in

Fig. 12. Each node in the tree makes at most
transmissions.
At the end of this step, each corner node has the
sum of the input messages corresponding to the nodes in
the cell . By pipelining the transmissions along the
tree, this step takes at most

The total number of transmissions in the network for this
step is at most

3) Let . If , return to step 2, else
terminate.

Note that at the end of the process, the sink node
can compute the sum of the input messages for any input

. The total number of steps in the
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Fig. 11. This figure illustrates the partition of the network� ��� �� into smaller

cells � , each of size � � � .

Fig. 12. Step 2 of the scheme for computing the sum of input messages. The
network is divided into smaller cells, each of size � � � . For any such
cell � , � � ����� �� ��, each corner node � � has the sum of the

input messages corresponding to the nodes in the cell � . Then the sum of the

input messages corresponding to the cell � is aggregated at � � ,
along the tree shown in the figure.

scheme is . The number of time slots that the scheme
takes is at most

The total number of transmissions made by the scheme is at
most

APPENDIX II
COMPLETION OF THE PROOF OF THEOREM IV.3

A) Proof of Lemma IV.4: For every , let
be the noisy copy of that the auxiliary node receives.

Denote the received vector by . The objective of is to com-
pute the parity of the input bits . Thus, the target
function is defined as

Since the input is uniformly distributed over , we have
. In the following, we

first show that Maximum Likelihood estimation is equivalent to
using the parity of the received bits i.e., as
an estimate for , and then compute the corresponding prob-
ability of error. From the definition of Maximum Likelihood es-
timation, we have

if
otherwise.

Next

where and follows since is uniformly dis-
tributed over and from the independence of the channels
between the sources and the auxiliary node. Similarly

Putting things together, we have

(2)

where is the number of components in with value 1. The
above equality can be verified by noting that the product in

produces a sum of monomials and that the sign of each
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monomial is positive if the number of terms of the monomial
conditioned on is even, and negative otherwise. From
(2), we now have

if
if .

Thus, we have shown that Maximum Likelihood estimation is
equivalent to using as an estimate for . The corre-
sponding probability of error is given by

Hence, for any scheme which computes the parity function
in an -noisy star network, the probability of error is at least

.
B) Proof of Lemma IV.5: We borrow some notation from

[8] and [12]. Consider the nodes in a network and mark a
subset of them as input nodes and the rest as auxiliary
nodes. Such a decomposition of the network is called an

-decomposition. An input value to this network is an
element of . Consider a scheme on such a network
which computes a function of the input. The scheme is said
to be -bounded with respect to an -decomposition
if each node in makes at most transmissions. Recall from
Section II that for any scheme in our model, the number of
transmissions that any node makes is fixed a priori and does not
depend on a particular execution of the scheme. Following [8]
and [12] we define the semi-noisy network, in which whenever
it is the turn of an input node to transmit, it sends its input bit
whose independent -noisy copies are received by its neighbors,
while the transmission made by auxiliary nodes are not subject
to any noise.

The proof now proceeds by combining three lemmas. Sup-
pose there exists a -error scheme for computing the parity
function in an -noise network which requires trans-
missions. We first show in Lemma II.1 that this implies the exis-
tence of a suitable decomposition of the network and a -error,

-bounded scheme for computing the parity function
in this decomposed network. Lemma II.2 translates the scheme

into a scheme for computing in a semi-noisy network
and Lemma II.3 translates into a scheme for computing
in a noisy star network, while ensuring that the probability of
error does not increase at any intermediate step. The proof is
completed using the fact that the probability of error for orig-
inal scheme is at most .

Let . We have the following lemma.

Lemma II.1: If there is a -error scheme for com-
puting the parity function (on input bits) in with
transmissions, then there is an -decomposition
of and a -error, -bounded scheme for
computing the parity function (on bits) in this decomposed
network.

Proof: If all nodes in the network make trans-
missions, then the lemma follows trivially. Otherwise, we
decompose the network into the set of input nodes and
auxiliary nodes as follows. Consider the set of nodes which
make more than transmissions each during the execu-
tion of the scheme . Since requires transmissions, there
can be at most of such nodes. We let these nodes
be auxiliary nodes and let their input be 0. Thus, we have an

-decomposition of the network . The
scheme now reduces to computing the parity (on bits) over
this decomposed network. By construction, each input node
makes at most transmissions, and hence, the scheme is

-bounded.

The following lemma is stated without proof, as it follows
immediately from [8, Section 6, page 1833], or [12, Lemma 5.1,
page 1064].

Lemma II.2: (FROM NOISY TO SEMI-NOISY) For
any function and any -error,

-bounded scheme for computing in an
-decomposition of , there exists an

-decomposed semi-noisy network of nodes
such that each input node has at most neighbors and a
-error, -bounded scheme for computing in the

semi-noisy network.
We now present the final lemma needed to complete the proof.

Lemma II.3: (FROM SEMI-NOISY TO NOISY STAR)
For any function and any -error,

-bounded scheme for computing in an -de-
composed semi-noisy network where each input node has at
most neighbors, there exists a -error scheme for
computing in an -noisy star network with noise parameter

, with each input node transmitting its input bit only
once.

Proof: In a semi-noisy network, when it is the turn of an
input node to transmit during the execution of , it transmits its
input bit. Since the bits sent by the input nodes do not depend on
bits that these nodes receive during the execution of the scheme,
we can assume that the input nodes make their transmissions at
the beginning of the scheme an appropriate number of times,
and after that only the auxiliary nodes communicate without any
noise. Further, since any input node in the -decomposed
network has at most neighbors, at most auxiliary
nodes receive independent -noisy copies of each such input
bit. Since is an -bounded scheme, each input node
makes at most transmissions, and hence, the auxiliary
nodes receive a total of at most independent -noisy
copies of each input bit.

Next, we use the scheme to construct a scheme for
computing in an -noisy star network of noise parameter

with each input node transmitting its input bit only
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once. Lemma II.4 shows that upon receiving an -noisy
copy for every input bit, the auxiliary node in the noisy star
network can generate independent -noisy copies
for each input bit. Then onwards, the auxiliary node can sim-
ulate the scheme . This is true since for only the auxiliary
nodes operate after the initial transmissions by the input nodes,
and their transmissions are not subject to any noise.

Lemma II.4: [8, Lemma 36, page 1834] Let ,
, and . There is a randomized algorithm that takes

as input a single bit and outputs a sequence of bits such that
if the input is a -noisy copy of 0 (respectively of 1), then the
output is a sequence of independent -noisy copies of 0 (respec-
tively of 1).

APPENDIX III
SCHEME FOR COMPUTING PARTIAL SUMS AT CELL-CENTERS

We describe an adaptation of the scheme in [10, Section
III], which requires at most transmissions and

time slots. The scheme in [10, Section III], is de-
scribed for and while the same ideas work for

, the parameters need to be chosen
carefully so that the scheme can compute efficiently in the new
regime.

Recall that the network is partitioned into cells of size
where . Consider any cell in the network and
denote its cell-center by . The scheme has the following steps:

1) Each node in takes turn to transmit its input bit ,
times, where . Thus, every

node in receives independent noisy copies of

the entire input. This step requires transmis-

sions and time slots.
2) Each node in forms an estimate for the input bits of the

other nodes in by taking the majority of the noisy bits
that it received from each of them. It is easy to verify that
the probability that a node has a wrong estimate for any
given input bit to be at most , see for example
Gallager’s book [15, page 125]. Each node then computes
the arithmetic sum of all the decoded bits and thus has an
estimate of the sum of all the input bits in the cell .

3) Each node in transmits its estimate to the cell-center
using a codeword of length such that is a con-

stant and the cell-center decodes the message with prob-
ability of error at most . The existence of such a
code is guaranteed by Theorem II.3 and from the fact that
the size of the estimate in bits ,
since . At the end of this step, has

independent estimates for the sum of the input bits cor-
responding to the nodes in . The total number of trans-
missions for this step is at most and it requires at
most time slots.

4) The cell-center takes the mode of these values to
make the final estimate for the sum of the input bits in .

We can now bound the probability of error for the scheme as
follows:

where follows since ; and follows since
. Thus, every cell-center can compute the

sum of the input bits corresponding to the nodes in with
probability of error at most . The total probability of error
is then at most . The total number of transmissions
in the network for this scheme is at most , i.e.,

and it takes at most , i.e.,
time slots.
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