
The influence of circulation on the stability
of vortices to mode-one disturbances

By Stefan G. Llewellyn Smith

Department of Applied Mathematics and Theoretical Physics, University of
Cambridge, Silver Street, Cambridge CB3 9EW, U.K.

The initial value problem for the two-dimensional inviscid vorticity equation, lin-
earized about an azimuthal basic velocity field with monotonic angular velocity,
is solved exactly for mode-one disturbances. The solution behaviour is investi-
gated for large time using asymptotic methods. The circulation of the basic state
is found to govern the ultimate fate of the disturbance: for basic state vorticity
distributions with non-zero circulation, the perturbation tends to the steady so-
lution first mentioned in Michalke & Timme (1967), while for zero circulation,
the perturbation grows without bound. The latter case has potentially important
implications for the stability of isolated eddies in geophysics.

1. Introduction

The classical theory of flow instability has been of central importance in fluid
dynamics for over a century. The problem of the instability of two-dimensional
inviscid flow in simple geometries has naturally received much attention. The
linearized vorticity equation governing the evolution of perturbations to a shear
flow is Rayleigh’s equation, and important conditions for stability, linked with
the names of Rayleigh and others, have been derived from it. However, it was
realised during the second half of this century that the classical approach of
normal mode instability fails to completely describe the possible linear evolution
of perturbations in unbounded inviscid flows. The continuous spectrum must also
be taken into account. Maslowe (1985) gives a good overview of the ideas involved
in the case of shear flows.

Rayleigh also derived a condition for the linear instability of a purely azimuthal
flow, namely that the basic state vorticity should have an extremum somewhere
in the flow. More recently, Michalke & Timme (1967) examined the stability of
circular vortices produced by boundary layer breakdown. There has also been a
large body of related work in dynamical meteorology and oceanography, since
observed structures in the atmosphere and oceans, such as tropical cyclones and
warm-core rings, can be modelled by quasi two-dimensional vortices (see e.g.,
Flierl 1987, Hopfinger & van Heijst 1993). Their properties are naturally of great
interest.

Rayleigh’s instability criterion for an azimuthal basic state is a condition for the
existence of a growing normal mode perturbation. The related continuous spec-
trum seems to have attracted very little attention. For example, a well-known
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work on hydrodynamic instability, Drazin & Reid (1981), derives Rayleigh’s con-
dition for swirling flows, and mentions that a proper initial value treatment, tak-
ing the continuous spectrum into account, could be developed, but stops there.
This paper completely solves the initial value problem of the linear evolution of
a mode-one perturbation. Previous results have been restricted to the normal
modes of the system (see e.g., Gent & McWilliams 1986). The solution is found
in terms of a single integral whose large-time behaviour is studied; the latter
depends crucially on the circulation of the basic state.

2. The initial value problem linearized about an azimuthal basic state

The two-dimensional motion of an incompressible fluid is governed by the prin-
ciple of conservation of vorticity of the flow. Small disturbances to the basic flow
may be investigated by expanding the equation about the basic state. The lin-
earized vorticity equation for a perturbation ψ(r, θ) around a basic state corre-
sponding to purely swirling motion may be written in the form(

∂

∂t
+ Ω

∂

∂θ

)
∇2ψ − Q′

r

∂ψ

∂θ
= 0, (2.1)

where Q is the vorticity of the basic flow, and Ω is the angular velocity of the basic
flow. These are related to the basic flow streamfunction Ψ(r) by Q = (rΨ′)′/r
and Ω = Ψ′/r (using the geophysical convention that vorticity is the positive
Laplacian of the streamfunction). This is Rayleigh’s equation in radial geometry.
The boundary condition on the streamfunction ψ is that |∇ψ| vanish at infinity.
There is also a regularity condition that |∇ψ| be non-singular at the origin.

Equation (2.1) is linear, and the coefficients depend only on r. The perturbation
streamfunction may hence be decomposed into radial modes ψn proportional to
einθ. The equation for mode n is(

∂

∂t
+ inΩ

)[
1
r

∂

∂r

(
r
∂ψn

∂r

)
− n2

r2
ψn

]
− in

Q′

r
ψn = 0. (2.2)

The solution for mode zero is merely ψ0 = ψi
0, the initial mode zero streamfunc-

tion perturbation. Any radial disturbance is just advected around by the basic
flow, and could be trivially incorporated into the basic flow by altering Ψ. Hence
mode zero is dynamically insignificant.

Laplace transforming (2.2) in time leads to

−(rφ′n)′ +

[
n2

r
+

inQ′

p+ inΩ

]
φn = − rqi

n

p+ inΩ
, (2.3)

where qi
n is the initial value of (rψi

n
′)′/r − n2ψi

n/r
2, i.e. the initial perturbation

vorticity of mode n. The Laplace transform of the streamfunction mode ψn is
denoted by φn. The solution for mode n may formally be derived by Green’s
functions, as in Case (1960); this leads to a consistent solution to the initial value
problem, incorporating the continuous spectrum. In the parallel-flow case, with
lateral boundaries, considered by Case, the underlying Sturm–Liouville problem
is regular, and a Green’s function can always be constructed formally. In the
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geometry considered here however, the interval is infinite, and the underlying
Sturm–Liouville problem is no longer regular.

For definiteness, the basic state vorticity will be taken to be bounded in mag-
nitude, and localised in space (i.e. of compact support, or decaying faster than
any power of r); the physical domain under consideration will be taken to be
unbounded. The basic state angular velocity will be taken to be monotonic de-
creasing and positive. This corresponds to an initial circular vortex monopole.
Consequently, the far-field angular velocity will be of the form

Ω =
Γ

2πr2
+O(r−∞), (2.4)

where Γ is the circulation, which will be taken positive (a derivation of this result
is presented in Appendix A). The order infinity notation denotes a contribution
that decays faster than any power of r (O could be replaced by o in this notation).
The basic state vorticity will also be taken to be piecewise continuous or smoother,
which permits distributions such as the Rankine vortex. The initial perturbation
vorticity will be taken to be localised and continuous.

3. The mode-one solution

Equation (2.2) has actually been solved for mode one in the context of plasma
physics by Smith & Rosenbluth (1990)†. However, in their work, the equation is
considered on a finite circular domain. As a result, the solution must either decay
for large time, or have algebraic growth of order t1/2 when the angular velocity
has extrema. The first possibility is no longer true on an infinite domain, while
the second is not relevant to monopolar vorticity distributions.

The mode-one solution to a forced version of (2.2) has been calculated in Reznik
& Dewar (1994); the equation was solved with zero initial condition, and with
forcing due to the beta-effect. The Green’s function is the same for that problem
and for the stability problem considered here, but the physical situation and
properties of the solutions are quite different. It was also shown by Reznik and
Dewar that there were no normal modes for mode one; this depends only on the
linear differential operator, and holds for both cases. A derivation of the reduction
to quadratures following Smith & Rosenbluth is given here, and the solution to
the initial value problem is calculated to understand the stability properties of
the system.

For mode one, Michalke & Timme (1967) showed that the function rΩ was
a steady solution and mentioned that it did not appear to be the vanishing
growth rate limit of any other normal mode solution. This steady solution was
later shown in Gent & McWilliams (1986) to be the only non-singular solution
of the eigenvalue problem for mode one. This form of this solution suggests the
substitution φ1 = r(p+iΩ)f in the governing equation. This leads to the equation

1
r(p+ iΩ)

[
r3(p+ iΩ)2f ′

]′
=

rqi
1

p+ iΩ
, (3.1)

† The work in this paper was carried out before the author became aware of the results of Smith &
Rosenbluth.
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whose solution is

f = −
∫ ∞

r

dv
v3(p+ iΩ(v))2

∫ v

0
u2qi

1(u) du+A(p)+B(p)
∫ ∞

r

dv
v3(p+ iΩ(v))2

. (3.2)

The boundary condition at infinity may be rewritten as r(p + iΩ)f → 0; this
is why the upper limit for the outer integral has been taken to be infinity. This
boundary condition must be satisfied for all p, so A must be zero. Near the
origin, the inner integral behaves like v3, since the initial perturbation vorticity
is bounded near the origin (and everywhere in fact). Hence B must be zero,
otherwise f would behave like r−2, which would be unacceptable. This leads to
the solution

φ1 = −r(p+ iΩ(r))
∫ ∞

r

m(v)
(p+ iΩ(v))2

dv, (3.3)

where

m(v) =
1
v3

∫ v

0
u2qi

1(u) du =
∂

∂v

(
ψi

1(v)
v

)
. (3.4)

The inverse Laplace transform of (3.3) leads to

ψ1 = −r
∫ ∞

r
[1 + t(−iΩ(v) + iΩ(r))]m(v)e−iΩ(v)t dv (3.5)

= −r
(
∂

∂t
+ iΩ(r)

)
t

∫ ∞

r
m(v)e−iΩ(v)t dv (3.6)

= ψi
1(r)e

−iΩ(r)t − ir
(
∂

∂t
+ iΩ(r)

)
t2
∫ ∞

r

ψi
1(v)
v

Ω′(v)e−iΩ(v)t dv (3.7)

The solution clearly satisfies the initial condition. The special case m = Ω′ leads
to the solution ψ1 = rΩ. This is natural, since that choice of m corresponds to
taking rΩ as the initial condition, and this is known to be a steady solution.

The corresponding expression for the vorticity may be found from (2.3), using
the fact that exp (−iΩt) is annihilated by the differential operator ∂t + iΩ. Hence

q1 = −iQ′t
∫ ∞

r
m(v)e−iΩ(v)t dv + qi

1(r)e
−iΩ(r)t. (3.8)

The vorticity is always localised in space, and the far-field behaviour of ψ1 is still
as in Appendix A.

4. Large time asymptotic behaviour

The full solution may be examined in the limit of large t. It is useful to rewrite
the integral in (3.6) as

I =
∫ 1/r

0
m

(
1
s

)
e−iΩ(1/s)t ds

s2
. (4.1)

The limit of large time corresponds to very rapid oscillation in the exponential
function, while m varies comparatively slowly. The method of steepest descents
may be used to obtain an asymptotic approximation to the integral, but care
needs to be taken, since Ω may not have simple analytic behaviour at critical
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points. The ultimate behaviour of I will depend on the circulation of the basic
flow, since that quantity determines the form of the flow at infinity, as the analysis
will show.

(a) Non-zero circulation
For basic states whose vorticity vanishes beyond a certain radius rM , the an-

gular velocity beyond that distance is Γ/2πr2. The angular velocity and m must
both be continuous at this radius, although the vorticity may have a jump there
(as in the case of the Rankine vortex). Then I may be rewritten as

I =
∫ 1/rP

0
m

(
1
s

)
e−iΓs2t/2π ds

s2
+
∫ 1/r

1/rP

m

(
1
s

)
e−iΩ(1/s)t ds

s2
, (4.2)

when rP is the maximum of r and rM . If rM < r, the second integral will be
zero.

The first integral may be evaluated as an asymptotic series by the method
of steepest descents, by treating s = x + iy as a complex variable. The path is
transformed onto the steepest descent contour starting from the origin, going to
e−iπ/4∞, and returning along the hyperbola x2 − y2 = 1/r2P . The behaviour of
m is only required near the origin and the point 1/rP ; the former is given in
Appendix A. Parametrising the contour from the origin by

s = (2π/Γ)1/2e−iπ/4u1/2 +O(u3/2) (4.3)

(where u is real, since it describes a constant phase contour) leads to a contribu-
tion

I0
1 = −2iπM

Γ

∫ ∞

0
e−ut

[
u3/2 +O(u∞)

] u−1/2du/2 +O(u1/2)du
u+O(u2)

(4.4)

= − iπM
Γt

+O

(
1
t2

)
. (4.5)

The notation Ω′(r+P ) will be used to highlight the discontinuity in the slope of
Ω at rP . The second contour may be locally parametrised near the point s = 1/rP
by

s =
1
rP

+
iu

r2P Ω′(r+P )
+O(u2). (4.6)

The contribution from this point to the first integral is then

I1
1 = e−iΩ(rP )t

∫ 0

∞
e−ut

[
r2Pm(rP ) +O(u)

] [ i
r2P Ω′(r+P )

+O(u)

]
du (4.7)

= − im(rP )
Ω′(r+P )t

e−iΩ(rP )t +O

(
1
t2

)
. (4.8)

The second integral has no stationary points, and can be evaluated asymptot-
ically by repeated integration by parts. This is more easily done in the original
variable. Then

I2 =
∫ rP

r
m(v)e−iΩ(v)t dv (4.9)
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=
i
t

[
m(rP )e−iΩ(rP )t

Ω′(r−P )
− m(r)e−iΩ(r)t

Ω′(r)

]
− i
t

∫ rP

r

(
m(v)
Ω′(v)

)′
e−iΩ(v)t dv.(4.10)

This integration by parts can be repeated to give an asymptotic series in 1/t.
There are now two cases, depending on whether Ω is smooth at rM . If Ω is
smooth there, i.e. if Ω′(rM ) = −Γ/πr3M , then all the terms in rP will cancel with
the equivalent terms in I1, and the leading order behaviour of I is given by

I = − iπM
Γt

− im(r)
Ω′(r)t

e−iΩ(r)t +O

(
1
t2

)
. (4.11)

This is also the solution when the second integral is not present, and rP = r. The
second term is annihilated by the ∂t + iΩ operator in front of the integral, so the
large time behaviour of the solution is given by

ψ1 = −πM
Γ
rΩ(r) +O

(
1
t

)
. (4.12)

Thus any smooth initial distribution with compact vorticity support, and non-
zero circulation, tends to the steady solution found by Michalke and Timme.

If Ω is not smooth, then the exponential terms in rP will not cancel, and the
leading behaviour will be given by

ψ1 = −πM
Γ
rΩ(r)−r(Ω(r)−Ω(rP ))e−iΩ(rP )tm(rP )

[
1

Ω′(r+P )
− 1

Ω′(r−P )

]
+O

(
1
t

)
.

(4.13)
Any localised, discontinuous basic state vorticity distribution will therefore tend
to the steady solution in the region with zero vorticity. However, there will be an
oscillatory term in the region inside the discontinuity. It is clear that this argu-
ment can be extended to any basic state profile with jumps in Ω′ by decomposing
the integral into suitable portions. Each point of discontinuity will give an os-
cillating contribution exactly as above. There will be no oscillatory contribution
beyond the point of discontinuity with the largest radius.

The preceding argument may be generalised to cover the case of any basic state
with non-zero circulation. Decomposing the integral (4.1) into sub-ranges, and
using appropriate order relations leads to exactly the same result for continuous
vorticity distributions, albeit with a slightly weaker order condition:

ψ1 = −πM
Γ
rΩ(r) + o(1). (4.14)

Discontinuities in the basic state vorticity will force oscillatory terms as before.

(b) Zero circulation
For basic states with zero circulation, the Taylor series of the term iΩ(1/s) in

the exponential vanishes at the origin (i.e. its righthand derivatives all vanish at
that point). This corresponds to an essential singularity in the complex s-plane.
The method of steepest descents is no longer valid, and a different procedure must
be followed to obtain the large time behaviour. The Riemann–Lebesgue lemma
shows that I(t) must vanish for large t. The failure of steepest descents shows
that the decay must be slower than any inverse power of t, hence tI(t) must be
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larger than O(1) in the large t limit. This means that the solution grows without
bound, albeit slower than t, since I(t) decays in time.

As an example, consider the Gaussian streamfunction Ψ = − exp (−r2)/2,
which has zero circulation. The associated basic state angular velocity is Ω =
exp (−r2), so the integral to be evaluated is

I =
∫ 1/r

0
exp

(
−ie−1/s2

t
)m(1/s)

s2
ds. (4.15)

This is very similar to an integral treated by Bender & Orszag (1978, Sec. 6.6
Example 3). The change of variable v = i exp (−1/s2) leads to the integral

I =
∫ i exp (−r2)

0
e−vtm(1/s)

s2
ds

dv
dv, (4.16)

where s is a function of v. The contours of stationary phase in the v-plane are the
real axis, and the line v = x + i exp (−r2)(0 6 x < ∞). The contribution from
the point i exp (−r2) is exponentially small compared with that from the origin,
so the leading order behaviour is obtained by considering

I ∼
∫ ∞

0
e−vtm(1/s)

s2
ds

dv
dv. (4.17)

Integrating once by parts removes the apparent singularity at the origin and leads
to

I ∼ −t
∫ ∞

0
e−vtψi

1(1/s)sdv. (4.18)

Following the steps in Bender & Orszag (1978), and using ψi
1 = −Ms/2+O(s∞)

(see Appendix A), now leads to the result

I = −M

ln t

{
1 +

iπ/2− γ
ln t

+O

(
1

(ln t)2

)}
, (4.19)

where γ = 0.5772 . . . is Euler’s constant. An equality sign may be used due to the
presence of an explicit order term. Hence the long-time behaviour of ψ1 is given
by

ψ1 =
iMt

ln t
rΩ(r) +O

(
t

(ln t)2

)
. (4.20)

There is a phase shift of π/2 in the solution, since it is the imaginary part which
dominates in the long time limit. It is clear that angular velocities of the form
exp(−ra) will lead to growth rates of the form (ln t)−2/a.

5. Conclusions

The exact solution to the mode-one linearized vorticity equation about an az-
imuthal basic state has been derived. For basic states with non-zero circulation
and continuous vorticity, the perturbation tends to the steady solution first found
by Michalke and Timme. This explains why the steady solution is not the limit of
any other amplified or decaying normal mode of the system (there are none). Dis-
continuities in the basic state vorticity lead in addition to oscillatory behaviour,
with frequency given by the angular velocity of the basic flow at the point of
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discontinuity. These oscillations may be interpreted as waves propagating on the
basic state vorticity discontinuity (i.e. Rossby waves), and whose influence is felt
over the disc bounded by the furthest radius of discontinuity of the vorticity.

Distributions with zero circulation eventually grow without bound as t in-
creases, at a rate slower than t. The disturbances exhibit a π/2 phase shift in
general for large time. Vortices with zero circulation have attracted a lot of atten-
tion in geophysical applications, since they have a weak signature in the far-field.
However, the preceding result shows that these isolated eddies are potentially
unstable to any perturbation with a mode-one component.

The large time limiting behaviour is not a uniform limit. The higher order
terms in (4.10) will not decay for large r, and neither will the higher order terms
in (4.20). However, these equations can only be expected to hold for Ω(r)t� 1.
In the non-zero circulation case, this corresponds to Γt� r2 for large r. For zero
circulation, the corresponding condition does not take such a simple form.

The evolution of the initial perturbation is entirely due to the continuous spec-
trum. Nonlinear effects are not considered. However, when the continuous spec-
trum can grow in time, it must be of importance in the appearance of nonlinear
effects, even though the basic state is stable to normal mode-one disturbances.
Of course, the nonlinear evolution of the system will involve mode coupling, but
the possibility of nonlinear growth being triggered by the algebraic growth of the
continuous spectrum component of the mode-one deformation is very intriguing,
and shows the vital importance of the circulation of the basic state.

This research was supported by NERC award GT4/93/125/P. Conversations with Professor
D. G. Crighton were extremely helpful. Conversations with Dr S. T. C. Siklos and Dr R. V. Cras-
ter were also useful. Comments by anonymous referees led to improvements in the manuscript.
The paper of Smith & Rosenbluth was brought to the author’s attention by Dr M. T. Mont-
gomery and Dr P. H. Haynes.

Appendix A. The far-field behaviour of the streamfunction

The streamfunction ψ(r) associated with a localised vorticity distribution q(r)
may be calculated for each mode by a Green’s function method. Poisson’s equa-
tion for mode n is

1
r

∂

∂r

(
r
∂ψn

∂r

)
− n2

r2
ψn = qn. (A1)

The regularity and decay conditions on ψ lead to the following Green’s functions:

G(r, ξ) = ξ ln r> (A2)

for mode 0 and

G(r, ξ) = − ξ

2n

(
r<
r>

)n

(A3)

for mode n, where r< and r> are the minimum and maximum respectively of
(r, ξ).

For a radial vorticity distribution q0(r), the solution for ψ0 is

ψ0 = ln r
∫ r

0
ξq0(ξ) dξ +

∫ ∞

r
ξ ln ξq(ξ) dξ. (A4)
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For large r, the asymptotic behaviour of ψ0 is given by

ψ0 =
Γ
2π

ln r +O(r−∞), (A5)

as can be shown by a formal expansion about the point r = ∞. This is the result
for the basic state. As a consequence,

Ω =
Γ

2πr2
+O(r−∞). (A6)

For a mode-one vorticity distribution, the solution is

ψ1 = − 1
2r

∫ r

0
ξ2q1(ξ) dξ − r

2

∫ ∞

r
q1(ξ) dξ, (A7)

which leads to

ψ1 = −M
2r

+O(r−∞), (A8)

for large r, where

M =
∫ ∞

0
ξ2q1(ξ) dξ (A9)

is related to the first moment in the multipole expansion of ψ. Since m = (ψ1/r)′,
its far-field behaviour is given by

m =
M

r3
+O(r−∞). (A10)
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