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Using an acoustic model for the full elastic problem, the early times of the two-
dimensional impact of a disc on a rigid plane, or impact between two identical discs,
are analyzed. We examine some aspects of wave propagation during the impact
process and we specify stress distributions near the impact region. Unlike the impact
of two spheres for which the quasistatic local contact approach of Hertz is well
adapted, a complete dynamical approach is necessary for the dynamic contact of
two discs. At short times after impact, we show the existence of supersonic effects
and we determine the shape of the corresponding stress waves that travel from
the impact region through the unstressed body. During the supersonic phase, the
contact region grows faster than the speed of sound and the surface outside the
contact region is undisturbed. We then solve the transition from supersonic to
subsonic regimes and determine the stress distribution near the impact region.
Finally, we discuss some physical implications of these results.
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1. Introduction

Impact of solid bodies encompasses a wide range of processes. Examples may be
found in the fields of tool design, vehicle accidents, game of billiards, granular
materials, impact of meteorites, and in many other areas. The concept of impact
is differentiated from the case of static, or quasistatic, loading by the nature of its
application. Static loading may be regarded as a series of equilibrium states and
requires no consideration of accelerating or wave effects. On the other hand, forces
created by collisions are exerted and removed in a very short interval of time and
initiate stress waves which travel away from the region of contact. However, the
complicated process of energy transfer under impact conditions leads to serious
difficulties in the mathematical analysis of this type of problems (Goldsmith, 1960;
Johnson, 1985).

The foundation for a rational description of impact phenomena was established
with the birth of the science of mechanics. The initial concept of rigid-body im-
pact is due to Galileo. Later, Newton furnished the concept of the coefficient of
restitution, which has survived essentially unchanged to the present day, though of
questionable fundamental significance. An important advance in the field occurred
with the treatment of one-dimensional longitudinal and transverse vibrations caused
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by impact on bars (Goldsmith, 1960; Love, 1944). However, this approach was su-
perseded by the Hertz theory of local contact deformations (Landau & Lifshitz,
1959; Johnson, 1985), which has found wide use in spite of the static elastic nature
of its derivation. Using similar approaches, an extensive analysis of the propagation
of stresses exceeding the elastic limit, based upon various models of plasticity, has
been developed in the last decades (Johnson, 1985).

In the case of a falling sphere on a rigid substrate, the Hertz theory of local
contact deformations allows the determination of the duration of impact tH (Landau
& Lifshitz, 1959; Johnson, 1985). It is shown that tH ∝ (c/v)1/5R/c, where v is the
initial velocity of the sphere, R its radius and c is a characteristic elastic wave speed
of the material. Since in most applications v � c, the duration of impact is thus
much larger than tW ∝ R/c, the time taken by a wave to travel from the impact
region to the upper boundary of the sphere, which is the minimum period of free
vibration of the body. Consequently, the quasistatic local contact approach provides
reliable results of the stress field for this configuration (Goldsmith, 1960; Johnson,
1985). Nevertheless, at times smaller than tW , the propagation of elastic waves
from the region of contact into the body cannot be neglected and the stress field
in the body exhibits a truly dynamical character (Thompson & Robinson, 1977).
On the contrary, one can show that the Hertz quasistatic approach of impact of an
infinite cylinder or of a disc in two dimensions on a rigid plane gives a duration of
impact tH ∼ tW ∝ R/c, independently of the initial velocity of the disc (Goldsmith,
1960). Curiously, this two-dimensional impact problem of a disc is similar to the one-
dimensional case of the impact on bars. Consequently, the quasistatic approximation
is not valid for this configuration and one has to deal with a dynamical approach.
Finally, independently of the geometry configuration, the dynamics of impact at
times smaller than the period of free vibration of the body shows supersonic effects
(Thompson & Robinson, 1977), due to the fact that the contact region spreads
more rapidly than the characteristic speeds of elastic waves.

Motivated by the existence of these dynamical processes at the early stages
of impact, we examine in this paper some aspects of wave propagation during
dynamic contact between elastic solids. During the initial stage of the impact, the
spreading velocity of the contact region scales with time as t−1/2. Therefore, at
first contact the spreading velocity exceeds the characteristic wave speed of the
body and then decreases with time to become subsonic. Using an elastodynamic
formulation of a model linear compressible solid, we analyze the early times of
impact between a disc on a rigid plane, or between two identical discs, and we
determine stress distributions near the impact region. In particular, we study in
detail the transition from supersonic to subsonic regimes. Our dynamical solution
of impact is valid for times smaller than the minimum period of free vibration of the
body. Note that Thompson & Robinson (1977) have already drawn attention to the
supersonic behavior immediately following the first contact between two spheres.
However, they focussed on the supersonic stage of contact between a rigid punch
on an elastic body and the transition from supersonic to subsonic regimes was not
considered. Moreover, as we shall show below, the dynamics of the contact region
of the present problem is different from the case studied in Thompson & Robinson
(1977); Tsai (1971); Bedding & Willis (1976). Studies of the supersonic and subsonic
regimes in the case of impact between a rigid punch and an elastic body have been
performed by Kubenko (2004); Borodich & Gomatam (1998); Zelentsov (2004). The
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case with Coulomb friction has been examined by Brock & Georgiadis (1994) . We
present exact and simple expressions, however, which shed light on the full elastic
problem.

The paper is organized as follow. In Section 2, the problem of a falling circular
elastic disc impacting a rigid plane, and the corresponding acoustic model problem
are presented. In Sections 3 and 4, we determine in detail stress distributions near
the impact region for the supersonic and subsonic regimes. Finally, we discuss some
physical consequences of our results and their relevance to actual problems.

2. The dynamic contact problem

t > 0

U  = −vt

zU  = −vt

−xC xC

t < 0

z

U  = − x / 2R2

x

z

t = 0

z

Figure 1. Schematic representation of a falling disc on a rigid substrate. At times t < 0,
the body is falling at constant velocity v, so that displacement is given by Uz = −vt. At
time t = 0, the body touches the rigid plane, and spreads along z = 0 for t > 0.

Consider a circular disc of radius R that falls vertically at constant speed v,
and impacts a rigid plane at time t = 0 (see Fig. 1). We will assume a plane strain
deformation of the disc, given by the two-dimensional displacement field U(x, z, t).
Defining U(x, z, 0) = 0, the displacement vector at times t ≤ 0 is simply given by
U = −vtez, where ez is a unit vector parallel to the z-axis. Let us also define a new
displacement vector field u given by u = vtez +U, which satisfies u(x, z, t ≤ 0) = 0.

We are interested in the dynamics of impact at times 0 < t < tW = 2R/c,
where tW is the time taken by a wave to travel from the impact region to the upper
boundary of the disc. During this stage of dynamic contact, the condition on the
normal displacement uz(x, 0, t) on the contact region, as defined in Fig.1 by the
segment (−xC , xC), can be derived using the same arguments as for the quasistatic
case (Landau & Lifshitz, 1959):

uz(x, 0, t) ≡ uC(x, t) = vt− x2

2R
for |x| < xC and 0 < t < tW . (2.1)

Note that (2.1) is valid when the undeformed configuration of the body in the
vicinity of the contact region can be approximated by a parabolic shape. Moreover,
the condition (2.1) holds when 0 < t < tW only, because it assumes that the disc
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is undeformed (u = 0) far from the impact region, which is true until the initial
wave radiated from the impact point at t = 0 has reached the upper boundary
of the disc. The wave character of the present problem is similar to the classical
one-dimensional vibration problem caused by impact of a bar.

Since the rigid substrate remains undeformed during the impact process, the
locations x = ±xC of the edges of the contact region must satisfy the conditions
uC(±xC , t) = 0, which gives

xC(t) =
√

2Rvt . (2.2)

Therefore, the speed of impact spreading in the x-direction is given by

ẋC(t) ≡ dxC

dt
=

√
Rv

2t
, with 0 < t < tW . (2.3)

Suppose that the material exhibits one characteristic elastic wave speed c. Thus, at
short times after the impact the speed of impact spreading is larger than the elastic
wave speed of the material (ẋC(t) > c), which is a signature of supersonic effects.
Moreover, the transition from supersonic to subsonic regimes (ẋC(t) < c) occurs
when the dynamic of contact is still governed by (2.1)–(2.3). Effectively, (2.3) shows
that the time t∗ at which the transition supersonic-subsonic regimes occurs is given
by

t∗ =
Rv

2c2
. (2.4)

Therefore, within the time interval of interest (0 < t < tW ), one has supersonic
spreading for 0 < t < t∗ and subsonic spreading for t∗ < t < tW .

Let us emphasize that due to the rigidity of the impacted plane, the dynamic
spreading of the contact region does not involve the inertia of the disc at times of
impact t < tW . This behavior is different from the case of impact between a rigid
punch and an elastic medium, where the spreading velocity depends of the inertia
of the punch (Thompson & Robinson, 1977; Tsai, 1971; Bedding & Willis, 1976).
In the present configuration, the dynamics of the contact region becomes controlled
by the inertia of the disc when t > tW only. Finally, note that the present problem
of impact of a disc on a rigid plane is equivalent to impact between two identical
discs and the following results are common to both configurations.

(a) The acoustic impact model problem

In the following, we calculate the elastodynamic response of a disc (or an in-
finite cylinder) when impacting a rigid plane. We will be mostly interested in the
transition from supersonic to subsonic regimes. For this we will use a model solid
which exhibits one characteristic wave speed only. The present acoustic model may
be connected to elastodynamics by assuming that the shear wave speed of the ma-
terial vanishes, and thus it will capture the main supersonic-subsonic transition
features of the actual elastodynamic problem. We define a scalar field ϕ such that

u(x, z, t) = ∇ϕ(x, z, t) , p(x, z, t) = −λ∇2ϕ(x, z, t) , (2.5)

where λ is the Lamé elastic constant and p is the pressure field. The present acoustic
model is equivalent to supposing that the Lamé shear coefficient vanishes (µ = 0),
and that there is only one compressible wave speed given by c =

√
λ/ρ, where ρ is
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the material density. Recalling that t∗ is given by (2.4), we nondimensionalize time
by 2t∗, length by 2ct∗, displacement by 2vt∗, pressure by λv/c, and ϕ by 4vct∗2.
Then the dimensionless transonic time is tT = 1

2 , and the dimensionless period of
free vibration of the body becomes tW = 2c/v.

For the present acoustic problem, the momentum equations reduce to

ϕ̈ = ∇2ϕ , (2.6)

with ϕ(x, z, t < 0) = 0. Far from the contact region, the disc is unstressed and thus
one has

ϕ(x, z, t) = 0 for
√

x2 + z2 →∞ . (2.7)

The condition (2.1) over the region of the boundary z = 0 in contact with the disc
becomes

ϕ,z(x, 0, t) = uC(x, t) = t− x2/2 for x2 < 2t , (2.8)

where the subscripted comma denotes partial differentiation. The rest of the bound-
aries of the disc are traction-free. Thus one has

p(x, 0, t) = −ϕ̈(x, 0, t) = 0 for x2 > 2t . (2.9)

During the first, supersonic, time interval (0 < t < 1
2 ), the problem has a Neu-

mann boundary condition and can be solved explicitly. A simple expression can be
obtained using the Cagniard-de Hoop method. During the second, subsonic time
interval ( 1

2 < t < tW ), the problem has mixed boundary conditions with a moving
contact line between the two regions, and a more complicated procedure is needed
(Poruchikov, 1993).

3. The supersonic regime

Acoustic waves in the disc are excited by the imposed displacement (2.8). In the
time interval of interest, t < tT ≡ 1

2 , the boundary of the region affected by the
impact moves faster than the wave speed and the region |x| >

√
2t is not affected.

Hence, the unstressed boundaries outside the impact region are not disturbed by
the propagation of the acoustic waves from the contact region. Therefore, until the
transonic instant an equivalent boundary condition outside the contact area is

ϕ,z(x, 0, t) = 0 for x2 > 2t and t < tT . (3.1)

Thus, the boundary condition at z = 0 in the supersonic problem (t < tT ) can be
written as

ϕ,z ≡ uC(x, t) = (t− x2/2)H(t− x2/2) , (3.2)

where H(.) is the Heaviside step function.
Even though the expressions we will obtain only describe the solution until the

transonic instant, tT = 1
2 , we calculate them beyond the transonic time, because we

will use them in order to solve the subsonic regime. We define the Laplace-Fourier
transform by

fLF(k, s) ≡
∫ ∞

−∞

∫ ∞

0

f(x, t)e−s(t−ikx) dt dx , (3.3)
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with inverse transform

f(x, t) =
1

4π2i

∫ ∞

−∞

∫ a+i∞

a−i∞
sfLF(k, s)es(t−ikx) dsdk . (3.4)

Then the Laplace-Fourier transform of the problem takes the form

ϕLF
,zz(k, z, s) = s2

(
k2 + 1

)
ϕLF(k, z, s) , (3.5)

ϕLF
,z (k, 0, s) = uC

LF(k, s) =
√

2πs−5/2e−sk2/2. (3.6)

The solution to this problem satisfying (2.7) is found to be

ϕLF(k, z, s) = −uC
LF(k, s)

s
√

k2 + 1
e−sz

√
k2+1, (3.7)

We define branch cuts in the k-plane extending from ±i to ±i∞, with
√

k2 + 1
positive and real for k on the real axis. Hence the transformed pressure is

pLF(k, z, s) = −s2ϕLF(k, z, s) =
√

2π
s−3/2

√
k2 + 1

e−sk2/2−sz
√

k2+1. (3.8)

We now consider the Laplace transform of the pressure on the boundary z = 0,
which is given by

pL(x, 0, s) =
s−1/2

√
2π

∫ ∞

−∞

e−s(k2/2+ikx)

√
k2 + 1

dk. (3.9)

This enables us to write

pL(x, 0, s) = π−1/2s−1/2gL(x, s). (3.10)

The Cagniard–de Hoop method (e.g. Craster 1996) now relies on defining a new
variable τ so that the integral in (3.9) becomes a Laplace integral. Hence we set

τ =
1
2
k2 + ikx. (3.11)

(a) Supersonic region

When |x| <
√

2τ , the relation (3.11) may be inverted to give

k(x, τ) = −ix±
√

2τ − x2. (3.12)

We now move the Fourier contour to Im k = −x, initially with |x| < 1 so as not
to involve the branch cut. We then change the variable of integration from k to τ .
The resulting horizontal contour is described as t takes the values 1

2x2 to ∞ (there
are two branches of k corresponding to the two possible signs of the square root:
k+ in the right half-plane and k− in the left half-plane). Hence we may write

gL(x, s) =
1√
2

∫ x2/2

∞

e−sτ√
k2
− + 1

dk−
dτ

dτ +
1√
2

∫ ∞

x2/2

e−sτ√
k2
+ + 1

dk+

dτ
dτ. (3.13)
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Since k2
− = (k2

+)∗ and
dk+

dτ
= −dk−

dτ
=

1√
2τ − x2

, (3.14)

we obtain

gL(x, s) =
∫ ∞

0

H(τ − x2/2)
1√

τ − x2/2
Re

1√
k2 + 1

e−sτ dτ. (3.15)

The choice of the branch of k is now irrelevant. The expression (3.15) has the form
of a Laplace transform, so τ is in fact the time variable t. From now on we replace
τ by t, in particular in (3.12). Now (3.15) may readily be inverted to give

g(x, t) ≡ g1(x, t) = H(t− x2/2)
1√

t− x2/2
Re

1√
k2(x, t) + 1

, (3.16)

where k(x, t) is defined by (3.12) with t replacing τ . Hence in the supersonic regime,
the pressure on the boundary z = 0 takes the form

p(x, 0, t) ≡ pS(x, t) =
1
π

t−1/2 ∗ g1(x, t) , (3.17)

where * is the time-convolution operator.

(b) Wave region

For |x| > 1, there is still the contribution g1(x, t) from the horizontal contour,
but the contour of integration must now also detour around the branch cut, and so
there is an extra contribution, g2(x, t), to add which corresponds to |x| >

√
2t. The

appropriate way to write k(x, t) is now

k(x, t) = −ix + i sgnx
√

x2 − 2t. (3.18)

The new section of the contour corresponds to values of t in the range (ta, 1
2x2),

where ta(x) ≡ |x|− 1
2 is the equation of the ray propagating at the acoustic velocity

that passes through the transonic point. We hence obtain

gL
2 (x, s) =

1√
2

∫ ta

x2/2

e−st

(i sgnx)|k2 + 1|1/2

dk

dt
dt+

1√
2

∫ x2/2

ta

e−st

(−i sgnx)|k2 + 1|1/2

dk

dt
dt.

(3.19)
This leads to

g2(x, t) = H(x2 − 1)H(x2/2− t)H(t− ta(x))
|k2 + 1|−1/2√

x2/2− t
. (3.20)

The pressure hence takes the form

pS(x, t) =
1
π

t−1/2 ∗ [g1(x, t) + g2(x, t)]. (3.21)

Figure 2 shows pS(x, t) for values of time before and after the transonic instant. The
curve marked ‘subsonic’ is not the physical pressure, since the boundary condition
(3.2) is not satisfied outside the contact area. The true pressure in the contact
region in the subsonic regime will be determined in Section 4. The convolution
integrals (3.17) and (3.21) have integrable singularities at the endpoints t = x2/2
corresponding to the contact line.
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Figure 2. Pressure pS(x, t) at times t = 0.1 (supersonic), t = 1
2

(transonic) and t = 1
(subsonic). The dots correspond to the asymptotic behavior near the contact line given
by (3.26) and (3.38).

(c) Asymptotic behaviors

We now examine in detail the pressure field in the vicinity of the endpoints,
t = x2/2, of the contact line. First we consider the g1 convolution, which is the
only contribution in the supersonic region in which t < tT . It can be shown that
the pressure given by (3.17) can be written as

pS(x, t) =
2
π

∫ π/2

0

Re
1√

k′2 + 1
dθ, (3.22)

with
k′

2 + 1 = 1− x2 − 2ix
√

2t− x2 sin θ + (2t− x2) sin2 θ. (3.23)

To obtain a uniform limit a new variable is needed. We hence define

a ≡ 2x
√

2t− x2

1− x2
. (3.24)

Small values of a correspond to being close to the contact line, but with x not too
close to its transonic value of |x| = 1, while a → ±∞ corresponds to approaching
the transonic value of x from the right and left respectively. The integral in (3.23)
can then be simplified to

pS ∼
2
π
|1− x2|−1/2

∫ π/2

0

Re
1√

s− i|a| sin θ
dθ, (3.25)
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where s = sgn (1− x2). This integral can be expressed in closed form in terms of
elliptic integrals, but the resulting formula is not enlightening.

For x2 < 1, i.e. in the supersonic region, we obtain pS = (1 − x2)−1/2 = (1 −
2t)−1/2 on the contact line. This is the finite value at the right-hand end of the
supersonic pressure curve of Figure 2. At the transonic point, which corresponds to
a → ±∞, the pressure is singular, with

pS ∼
1
π

√
2
|x|

K(
1
2
)(2t− x2)−1/4 ∼

√
2

π
K(

1
2
)(2t− x2)−1/4, (3.26)

where K is the complete elliptic integral of the first kind. This behaviour is indicated
by the dots on the transonic curves in Figure 2. For x2 > 1, i.e. in the subsonic
region, we have

p1 ∼
2|x|
π

√
2t− x2

(x2 − 1)3/2
∼ 2

√
2t

π

√
2t− x2

(x2 − 1)3/2
. (3.27)

This contribution to the pressure tends to zero on the contact line, and will cancel
with a contribution from g2 as will be shown. The correction terms to (3.27) are
O(a3, ac) where c ≡ (2t− x2)/(1− x2).

In the subsonic region, the g2 convolution needs to be taken into account. There
are now two cases depending on whether we are in the contact region with t >
1
2x2 > ta(x) or in the acoustic region with 1

2x2 > t > ta(x). In the contact region,
the integral can be written as

p2 =
1
π

∫ π/2

0

[
cos2 θ +

2t− x2

x2 − 2ta

]−1/2

|k′2 + 1|−1/22 sin θ dθ. (3.28)

The factor |k′2+1|−1/2 does not simplify near the contact line, while the first factor
becomes non-uniform. We are led to define another new variable

bc ≡

√
2t− x2

x2 − 2ta
, (3.29)

and small values of b correspond to a region near the contact line but not too close
to the transonic point. We now obtain the asymptotic behavior of p for small b. We
find

p2 =
2
π

1√
x2 − 1

log
2
bc

+ Ic −
2|x|

√
x2 − 2ta

π(x2 − 1)3/2
bc + O(b2

c ln bc), (3.30)

where

Ic ≡
2
π

∫ π/2

0

tan θ[|k′2c + 1|−1/2 − (x2 − 1)−1/2] dθ (3.31)

and
k′c = −ix + i sgnx

√
x2 − 2ta cos θ. (3.32)

There is hence a logarithmic singularity in the pressure field. In the acoustic region,
a similar analysis holds with bc replaced by ba, where

ba ≡

√
x2 − 2t

2(t− ta)
. (3.33)
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Then
p2 =

2
π

1√
x2 − 1

log
2
ba

+ Ia + O(b2
a ln ba), (3.34)

where

Ic ≡
2
π

∫ π/2

0

tan θ[|k′2a + 1|−1/2 − (x2 − 1)−1/2] dθ (3.35)

and
k′a = −ix + i sgnx

√
2(t− ta) cos θ. (3.36)

Close to the contact line, we can write x2 = 2t + O(b2
a) = 2t + O(b2

c), so we
define a new variable (note that t > 1/2)

b =
|x2 − 2t|1/2

√
2t− 1

. (3.37)

Then
pS =

2
π

1√
x2 − 1

log
2
b

+ I0 + O(b2 ln b, a3, ac), (3.38)

where the contribution from (3.27) has cancelled with the third term in (3.30). Here

I0 ≡
2
π

∫ π/2

0

tan θ[|k′20 +1|−1/2−(x2−1)−1/2] dθ, k0 = −ix+i sgnx(
√

2t−1) cos θ.

(3.39)
The asymptotic behaviours (3.26) and (3.38) are shown in Figure 2.

4. The subsonic regime

We have obtained a solution ϕS satisfying the boundary condition (3.2) over the
entire boundary. Now consider the function ϕP for t > tT that vanishes along with
ϕ̇P at t = tT and satisfies the boundary conditions

ϕ̈P = −ϕ̈S for x2 > 2t; ϕP ,z = 0 for x2 < 2t. (4.1)

Then the sum ϕ = ϕS + ϕP satisfies the boundary conditions (2.8,2.9): ϕ,z = uC

for x2 < 2t and p = −ϕ̈ = 0 for x2 > 2t, and is continuous in time, as is its time-
derivative. It is hence the solution to the full physical problem with the correct
boundary conditions.

A method of calculating ϕP is given in Poruchikov (1993; § 6.4.3; see also Slepyan
2002). It turns out to be essential to work with the pressure. We write ϕ̈ = −p = a
and ϕ,z = σ. We consider only the right-hand discontinuity and change to the new
coordinates x̃ = x − 1, t̃ = t − tT = t − 1

2 . Note also that p̃S(x̃, t̃) = pS(x, t). The
transonic point is at the origin of the new time and space variables. We drop tildes
for now.

The contact line is now at the location l(t) =
√

2t + 1− 1 (so that l(0) = 0 and
l′(0) = 1). The solution to the problem for a and σ is given by

a− = S− ∗∗{[σ− ∗∗S+ − a+ ∗∗P−]H[l(t)− x] + C}, (4.2)
σ+ = −P+ ∗∗{[σ− ∗∗S+ − a+ ∗∗P−]H[x− l(t)]− C}, (4.3)
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where the double convolution operator involves both time and space. Variables
with subscript + (respectively −) vanish for x < l(t) (respectively x > l(t)). The
boundary conditions give σ− = 0 and a+ = pS . The functions S−, P− and P+ are
given by

S− = −
t
−1/2
+√

π
δ(t + x), P− =

t
−3/2
+

2
√

π
δ(t + x), P+ = −

t
−3/2
+

2
√

π
δ(t− x), (4.4)

where

f+(t) =

{
f(t) for t > 0,

0 for t < 0.
(4.5)

The contribution C corresponds to a homogeneous solution of the problem, which
we neglect for now.

A calculation analogous to that of Poruchikov (1993, § 6.4.2) gives

p− =
1
π

H[l(t)− x]
√

l(t0)− x

∫ x+t

l(t0)

pS (t + x− ξ, ξ)
1√

ξ − l(t0)
dξ

x− ξ
, (4.6)

where t0 is the root of the equation

l(t0) = x + (t− t0). (4.7)

(Note that this is really p̃S above.) This equation gives the value of time, t0, at
which a ray propagating to the left at the acoustic velocity from the boundary to
the point (x, t) intersects the contact line x = l(t). Note that t > t0. Figure 3 shows
the contact line and acoustic lines in the original (x, t) plane. The vertical lines
are the ranges of integration of the convolution integrals that define the subsonic
solution for the values of (x, t) indicated by crosses. The solid portion correspond
to the g1 convolution and the dashed to the g2 convolution. The solid and dash-
dot portions of the diagonal line make up the path of integration for the subsonic
solution defined by (4.6) for the supersonic value of (x, t). The dotted portion is
the continuation of that straight line to (x, t). Along the dash-dot portion, the
integrand (the supersonic potential evaluated beyond the transonic point) vanishes
by causality. The solution that we find is valid in the region located in the right
half-plane x > 0 below the crossing of the acoustic ray emitted from the left-hand
contact line and the right-hand contact line itself. Beyond that time, we must take
into account both transonic points. However we do not need to do this in order to
calculate the structure of the solution in the initial phase of the subsonic region.
The reason we derived the solution (4.6) to the problem in terms of p is that this
produces a solution which has acceptable behaviour in the pressure field. Working
with ϕ or ϕ̇ gives unacceptable singular terms. These solutions could be eliminated
using the homogeneous solutions, but this would be difficult.

We have hence obtained the full solution to the subsonic problem. Figure 4
shows the full solution for times after the transonic instant. Near the contact the
pressure is finite, with square root behaviour. We see that as time progresses, the
solution adjusts as a disturbance moves to the left from the contact line leading to
a cusp. At later times, the solution has a smooth parabolic shape.
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Figure 3. Space-time diagram for the subsonic and supersonic problems. The parabola is
the contact line. The thin diagonal lines are the acoustic rays emitted by the two transonic
points. The horizontal dotted line separates the subsonic and supersonic regions. The
thick lines are explained in the text. The two indicated points are (1.5, 2.5) (subsonic) and
(0.2, 1) (supersonic).

(a) Asymptotics

We now calculate the behavior of the pressure to the left of the contact line. We
return to the original coordinate system, in which p− takes the form

p− =
1
π

H[l(t)− x]
√

l(t0)− x

∫ x+t−1/2

l(t0)

pS (t + x− ξ, ξ)
1√

ξ − l(t0)
dξ

x− ξ
. (4.8)

The only difference is in the upper limit of the integral. The relation (4.7) takes the
same form in the original coordinate system. A convenient variable to investigate
the asymptotic behaviour is ε ≡ l(t0)− x. We obtain

p = −ε1/2

π
=
∫ t−1/2

0

pS (t− ζ, l(t) + ζ)
dζ

ζ3/2
+ O(ε, b2 ln b, a3, ac), (4.9)

where the integral is to be understood as a Hadamard principal part integral. The
derivation of (4.9) is given in Appendix Appendix A. The coefficient of ε1/2 is hence
a regularized integral of ϕS(t, x) over the acoustic region (along the bold diagonal
line of Figure 3). The variable ε is convenient, but η ≡ l(t) − x is more physical.
For small ε and η, one can show that

ε =
η

1− l̇(t)
. (4.10)
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Figure 4. Plots of the full pressure along the contact line at different times of the im-
pact process. The dots correspond to the asymptotic behavior (4.9) near the endpoint
xC =

√
2t.

The various error terms in (4.9) then become b2 ln b ∼ η log η, a3 ∼ η3/2, ac ∼ η3/2.
This leads to

p = − η1/2

π(1− l̇(t))
=
∫ t−1/2

0

pS (t− ζ, l(t) + ζ)
dζ

ζ3/2
+ O(η ln η). (4.11)

These asymptotic limits are not uniformly valid close to the transonic point where
the various denominators in a, b, and c are no longer small.

5. Discussion

Some aspects of wave propagation during dynamic contact between solids have been
presented. In the framework of a model linear acoustic solid, we have analyzed the
earlier times of impact between a disc on a rigid plane, or between two identical
discs, and have determined stress distributions near the impact region. In particular,
the transition from supersonic to subsonic regimes has been studied in detail. A
key feature of the impact of a body on a rigid plane or between two identical discs
is that the spreading of the contact region does not involve the inertia of the disc
at times of impact t < tW . The dynamics of the contact region is determined and
its spreading velocity scales with time as t−1/2. This behavior is different from the
case of impact between a rigid punch and an elastic medium, where the spreading
velocity depends of the inertia of the punch (Thompson & Robinson, 1977; Tsai,
1971; Bedding & Willis, 1976).
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For the present problem, a transonic transition occurs at times t∗ = 2Rv/c2

which corresponds to a size r = 2xC = 4R(v/c) of the impacted region, which
could be relevant if the impact speed v is large enough. At the endpoints, the stress
has been found to be singular as x−1/4. While this singularity does not induce
a finite nonzero energy release rate, it corresponds to large stress concentrations.
Moreover, Figure 4 shows that just below t∗ the stress distribution in the supersonic
regime increases rapidly when approaching the endpoints ±xC and may exceed the
elastic limit of the material. On the contrary, in the subsonic regime, the stress
tends to zero at these points. Therefore, although a permanent deformation can be
produced by exceeding the elastic limit even in the quasistatic loading, the dynamic
part of the impact will reinforce this behavior. The impact phenomenon changes in
ways which depend upon the mechanical properties of both the projectile and the
target. Thus, it can be also conjectured that such a wave propagation singularity
might have some effects on the origin of the coefficient of restitution. Moreover, the
divergence of the pressure field at the transonic point might contribute to the wear
of materials subjected to dynamical contact loadings.

The total force on the over the contact region in the supersonic regime can
be calculated quite simply from (3.8). Noting that the pressure in the supersonic
regime vanishes outside the contact region, we have

P (t) =
∫ ∞

−∞
p(x, 0, t) dx = pF (0, 0, t) =

2√
π

t1/2 ∝ V (t)S(t). (5.1)

This is the same result mentioned by Borodich & Gomatam (1998) in the supersonic
stage of contact. No such simple form appears possible for the subsonic regime.

The extension of the present analysis to an elastic solid is conceptually straight-
forward. The Cagniard–de Hoop method still works, because the waves are non-
dispersive, but the space-time diagram becomes more complicated as two different
waves are released at the two sonic instants. However, the results can still be ex-
pressed in terms of simple convolution integrals and asymptotic limits can be cal-
culated. The subsonic calculations is significantly more complicated however. Once
again the method remains the same, but the equivalent result to (4.6) is no longer
a single integral, but rather a triple integral. As mentioned previously, we expect
the transonic behaviour here to carry through to the full elastic problem.

While the present analysis was restricted to two-dimensional impact problems
the results should persist in three dimensions, especially the singular behavior at the
transonic point and the stress distribution in the contact region should be similar.
Moreover, the general results of the present acoustic model should be relevant to
the elastodynamic problem if one restricts oneself to the analysis of the supersonic-
subsonic transition regimes. Finally, this study may provide a general framework for
dynamic impact problems where the transition from supersonic to subsonic regimes
is involved. Effectively, although the fraction of the impact energy which is radiated
as waves is generally very small, it may be important in some applications such as
seismology (Rosakis, 2002) or the kinetics of granular materials.

We thank Y. Pomeau and W. R. Young for enlightening discussions. We also thank a
referee for helpful comments and references. The Laboratoire de Physique Statistique de
l’Ecole Normale Supérieure is associated with the CNRS (UMR 8550) and Universities
Paris VI and Paris VII. SGLS was supported as a visiting professor from the University
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istered by the English Speaking Union while at the Scripps Institution of Oceanography.

Appendix A. Asymptotic behavior of p− near the contact
point

We first carry out the change of variable ξ = l(t0) + ζ in (4.8), so that to the left
of the contact line (where ε > 0)

p− = −ε1/2

π

∫ t−1/2−ε

0

pS (t− ζ − ε, l(t0) + ζ) ζ−1/2 dζ

ζ + ε
. (A 1)

Consider the integral

J =
∫ A

0

F (ζ)ζ−1/2 dζ

ζ + ε
(A 2)

where we allow A and F (ζ) to depend on ε. The results of § c show that

F (ζ) = αa log βaζ + O(ζ) (A 3)

for small ζ, where αa and βa are factors depending on the terms in (3.34). Using
standard methods, we obtain

J = ε−1/2παa log βaε + I(A)− 2αaA−1/2(log βaA + 2) + O(ε1/2), (A 4)

where the integral I(A) is given by

I(A) ≡
∫ A

0

F (ζ)− αa log βaζ

ζ3/2
dζ. (A 5)

In our case, A = t− 1
2−ε. From § c, expanding A in ε gives an O(ε ln ε) correction

to (A). The remaining O(1) part of (A 4) is exactly the definition of the Hadamard
finite-part integral

=
∫ t−1/2

0

F (ζ)
dζ

ζ3/2
=

∫ t−1/2

0

F (ζ)− αa log βaζ

ζ3/2
dζ − 2αa√

t− 1/2
(log [βa(t− 1

2
)] + 2).

(A 6)
The full asymptotic result for the subsonic pressure in the contact region is

hence the combination of (3.27), (3.30), (A 1) and (A 4):

p− = −παa log βaε− ε1/2

π
=
∫ t−1/2

0

F (ζ)
dζ

ζ3/2
+ O(ε)

+
2
π

1√
x2 − 1

log
2
b

+ Ic + O(b2
c ln bc, a

3, ac) (A 7)

(once again the O(bc) terms have cancelled). We can now replace ba and bc by b in
the αa, βa and Ic terms,making an error of O(b2). But then the logarithmic and
constant terms cancel. The finite-part integral is now to be computed using α and
β, i.e. expressing pS using (3.38) near the contact line.The final result is

p− = −ε1/2

π
=
∫ t−1/2

0

pS (t− ζ, l(t) + ζ)
dζ

ζ3/2
+ O(ε, b2 ln b, a3, ac). (A 8)
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