Homework VI.

Due Friday November 3, 2006, in fourth hour.
Read: Chapter 10

Problems:

1. Redo Ex (8.11) from class, this time including gravity in the viscous flow in the outlet tube. What is the change in the calculated kinematic viscosity?
2. Obtain the solution for steady fully-developed flow down an inclined plane using the Navier-Stokes and continuity equations.
3. Find the velocity profile for flow between two coaxial rotating cylinders. The inner cylinder has radius R_{1} and angular velocity Ω_{1}; the outer cylinder has radius R_{2} and angular velocity Ω_{2}.
4. Calculate the torques on the two cylinders of the previous question.
5. Consider the velocity field

$$
v_{\theta}= \begin{cases}\Omega r & r \leq a \\ \Omega a^{2} / r & r>a\end{cases}
$$

Compute the pressure field and find the difference in height of the free surface between the origin and infinity equation. Why does Bernoulli's equation (9-25) not help?

Comments:

The material derivative D / Dt corresponds to riding with a particle as it moves. This is different from the partial derivative $\partial / \partial t$, which corresponds to sitting at a fixed point in space. Even when the flow is steady, which means that $\partial / \partial t=0$, the value of a quantity can change as we move with the particle. For example acceleration becomes $\partial \mathbf{v} / \partial t+(\mathbf{v} \cdot \nabla) \mathbf{v}$. Make sure you know how to use vector operators so that you can compute material derivatives.

