http://maecourses.ucsd.edu/mae210a

Homework VI.

Due *Friday November 3, 2006,* in fourth hour.

Read: Chapter 10

Problems:

- 1. Redo Ex (8.11) from class, this time including gravity in the viscous flow in the outlet tube. What is the change in the calculated kinematic viscosity?
- 2. Obtain the solution for steady fully-developed flow down an inclined plane using the Navier–Stokes and continuity equations.
- 3. Find the velocity profile for flow between two coaxial rotating cylinders. The inner cylinder has radius R_1 and angular velocity Ω_1 ; the outer cylinder has radius R_2 and angular velocity Ω_2 .
- 4. Calculate the torques on the two cylinders of the previous question.
- 5. Consider the velocity field

$$v_{\theta} = \begin{cases} \Omega r & r \leq a, \\ \Omega a^2/r & r > a. \end{cases}$$

Compute the pressure field and find the difference in height of the free surface between the origin and infinity equation. Why does Bernoulli's equation (9-25) not help?

Comments:

The material derivative D/Dt corresponds to riding with a particle as it moves. This is different from the partial derivative $\partial/\partial t$, which corresponds to sitting at a fixed point in space. Even when the flow is steady, which means that $\partial/\partial t=0$, the value of a quantity can change as we move with the particle. For example acceleration becomes $\partial \mathbf{v}/\partial t+(\mathbf{v}\cdot\nabla)\mathbf{v}$. Make sure you know how to use vector operators so that you can compute material derivatives.