Quiz III Solution

George Gabriel Stokes (1819-1903)

1

1. Newtonian fluids have a linear shear stress-rate of shear strain relation.
2. Fully-developed flow does not depend on the coordinate along the pipe (or channel).
3. The Navier-Stokes equation is derived from Newton's Second Law.

2 The vorticity of a two-dimensional flow is the z-direction, with $\omega=2-2 y$. Shear stress only has the $\tau_{x y}=\tau_{y x}=\mu(2-2 y)$ components. The flow is incompressible and the Navier-Stokes equation is

$$
\rho \frac{\mathrm{D} \mathbf{u}}{\mathrm{D} t}=\nabla p+\rho \mathbf{g}+\mu \nabla^{2} \mathbf{u} .
$$

The x - and y-components here become

$$
0=-\frac{\partial p}{\partial x}-2 \mu, \quad 0=-\frac{\partial p}{\partial y}-\rho g .
$$

This question is wrong: there is an inconsistency between the pressure gradient and the velocity.

Either the pressure is wrong and should be $p=-2 \mu x-y$, so that $\rho g=1$. Then the pressure gradient is $(-2 \mu,-1)$ and the velocities of the boundaries are $u(0)=0$ and $u(1)=1$. Or the velocity is wrong and should be $A y$. Then the pressure gradient is $(0,1)$ and the velocities of the boundaries are $u(0)=0$ and $u(1)=A$. In both cases gravity acts downward.

3 As in class, we have

$$
u=\frac{y^{2}}{2 \mu} \frac{\mathrm{~d} P}{\mathrm{~d} x}+\left(U h-\frac{h^{2}}{2 \mu} \frac{\mathrm{~d} P}{\mathrm{~d} x}\right) y
$$

The average velocity is proportional to the volume flux

$$
Q=\int_{0}^{y} u(y) \mathrm{d} y=U \frac{h^{2}}{2}-\frac{h^{2}}{12 \mu} \frac{\mathrm{~d} P}{\mathrm{~d} x}
$$

For this to vanish, we need $U=\left(h^{2} / 6 \mu\right) \mathrm{d} P / \mathrm{d} x$.

4 Fully-developed, incompressible, steady flow of a Newtonian fluid in a pipe. A force balance on an annular control volume gives

$$
r \frac{\mathrm{~d} P}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{~d} r}\left(r \tau_{r x}\right)
$$

Integrate to give $\tau_{r x}=(r / 2) \mathrm{d} P / \mathrm{d} x$, since we can't have a singularity at the axis. The pressure gradient is constant.

Now substitute in the constitutive relation for a Newtonian fluid:

$$
\mu \frac{\mathrm{d} v_{x}}{\mathrm{~d} r}=\frac{r}{2} \frac{\mathrm{~d} P}{\mathrm{~d} x} .
$$

Integrate twice and use the no-slip boundary condition $v_{x}=0$ at $r=a$:

$$
v_{x}=\frac{1}{4 \mu} \frac{\mathrm{~d} P}{\mathrm{~d} x}\left(r^{2}-a^{2}\right)
$$

The volume flux is then

$$
Q=\int_{0}^{a} v_{x} 2 \pi r \mathrm{~d} r=\frac{\pi a^{4}}{8 \mu} \frac{\mathrm{~d} P}{\mathrm{~d} x}
$$

The Hagen-Poiseuille law is this relationship, reexpressed in terms of the diameter D of the pipe and the pressure drop ΔP per length L :

$$
\Delta P=\frac{128 \mu Q}{\pi D^{4}}
$$

