http://maecourses.ucsd.edu/mae210a

Quiz IV Solution

Edgar Buckingham (1867–1940)¹

1

- 1. The velocity potential exists only for irrotational flows.
- 2. The streamfunction exists only for incompressible flows.
- 3. The Buckingham Pi theorem generates dimensionless parameters.
- 2 The streamlines are parabolas about the y-axis. The vorticity is $\omega = -\nabla^2 \psi = -2$. This does not vanish so the flow is not irrotational and there is no velocity potential.
- 3 Five parameters: Δp [ML⁻¹T⁻²], D [L], ρ [ML⁻³], ω [T⁻¹], Q [MT⁻¹]. Three dimensions. Two non-dimensional parameters. No unique choice; take ρ , D and ω as repeating parameters. Get

$$\pi_1 = \frac{\Delta p}{\rho D^2 \omega^2}, \qquad \pi_2 = \frac{Q}{\rho D^3 \omega}.$$

4 Two-dimensional incompressible irrotational flow: there exists a streamfunction Ψ with $\nabla^2\Psi=0$. The boundary conditions are $\Psi\to Uy$ as $r\to\infty$ and $\Psi=C$ on r=a (C is a constant). Try U times the solution given: it satisfies Laplace's equation. For large $r,\Psi\to Ur\sin\theta=Uy$. On the boundary of the cylinder, $\Psi=0$. Hence it is the required solution.

The velocity on the boundary is purely azimuthal, with $u_{\theta} = \partial \Psi / \partial r_{r=a} = U \sin \theta (1 + a^2/r^2)_{r=a} = 2U \sin \theta$. The pressure field from Bernoulli is $p = p_{\infty} - 2\rho U^2 \sin^2 \theta$. The drag is the force parallel to the flow, so we need to use $n_x = \cos \theta$. Then we have

$$D = -\int p n_x \, \mathrm{d}S = -\int_0^{2\pi} [p_\infty - 2\rho U^2 \sin^2 \theta \cos \theta] a \, \mathrm{d}\theta = 0,$$

an example of d'Alembert's paradox.

 $^{^1}$ Actually the picture is Buckingham palace; I couldn't find a picture of Edgar Buckingham on the Internet