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1

1. In a boundary layer, there is no pressure gradient normal to the boundary.

2. The Reynolds stress is the turbulent contribution to shear stress.

3. The Fanning friction factor is a non-dimensional version of head loss.

2 In this experiment water flows from a large reservoir through a clear tube.
A thin filament of dye is injected at the entrance to the tube allows visual ob-
servation of the flow. At low flow rates (low Reynolds number) the injected
into the flow remains in a single filament; there is little dispersion of dye be-
cause the flow is laminar. A laminar flow is the one in which the fluid flows in
laminae, or layers; there is no macroscopic mixing of adjacent fluid layers.

As the flow rate through the tube is increased, the dye filament becomes
unstable and breaks up into a random motion; the line of dye is stretched and
twisted into myriad entangled threads, and it quickly disperses throughout
the entire flow field. This behavior of turbulent flow is due to small, high-
frequency velocity fluctuations superimposed on the mean motion of a turbu-
lent flow; the mixing of fluid particles from adjacent layers of fluid results in
rapid dispersion of the dye.

The pipe flow regime is determined by the Reynolds number, Re = ρV D/µ.
Under normal conditions, the transition from laminar to turbulent regime oc-
curs at Re ≈ 2300.

From Fox & McDonald, “Introduction to Fluid Mechanics”, 5th ed. Wiley.
(p. 332-333).

3 The energy (extended Bernoulli) equation reduces to

w = g(y1 − y2)− hLg



where w is the power (per mass flow rate). The Reynolds number is

Re =
1
2 × 4

1.22× 10−5
= 164 000.

Cast iron pipe so e/D = 0.0017. Then some playing around with the transition
formula gives f = 0.0059. Hence hL = 1.401 ft. The power is then

Ẇ = ṁw =
g(−1− 1.401)ft

550ft lbf s−1 hp−1

62.3lbm ft−3

glbmlb−1
f

×π

4
×( 1

2 ft)2×4ft s−1 = −0.2136 hp.

4 Find constants a and b. Boundary conditions: (i) u = 0 at y = 0: automatic;
(ii) u = U at y = δ: a sin δ = U ; (iii) du/dy = 0 at y = δ: ab cos bδ = 0; (iv)
(optional) d2u/dy2 = 0 at y = 0: automatic. Condition (iii) gives bδ = nπ/2.
The profile with n = 1 is the correct one (the others have reversed flow). Then
(i) gives a = U . This gives u = U sin (πy/2δ).

Now solve

τ = µ
∂u

∂y

∣∣∣∣
y=0

= ρU2 d
dx

∫ δ

0

u

U

(
1− u

U

)
dy.

This gives
πµU

2δ
=

∫ δ

0
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πy

2δ

(
1− sin
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2δ

)
dy =

dδ

dx

4− π

2π
.

Separate variables and get

δdδ = 11.5
µ

ρU
dx;

Taking δ = 0 at x = 0 gives
δ

x
=

4.8√
Rex

.

Momentum thickness:

Θ =
∫ δ

0

u

U
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)
dy =
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.

Displacement thickness:

δ∗ =
∫ δ

0
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U

)
dy =

∫ δ
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π − 2
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.


