CENG101A: Introductory Fluid Mechanics Fall Quarter 2006 http://maecourses.ucsd.edu/mae210a

Name: ____

Daniel Bernoulli (1700–1782)

This is a 50 minute closed-book exam. Please put your name on the top sheet. Answer all four questions. Explain your working and state any assumptions you have made.

- 1 (3 points) Circle the correct answer.
 - 1. Streamlines
 - can never form closed loops.
 - are everywhere parallel to the velocity field.
 - are the same as particle paths.
 - only exist in two-dimensional flows.
 - can be obtained by solving algebraic equations.
 - 2. $\nabla \cdot \mathbf{x} =$
 - is a vector.
 - 3 (in three dimensions).
 - points from the origin to the point **x**.
 - depends on the position of the origin.
 - makes no sense.
 - 3. The first law of thermodynamics
 - concerns entropy.
 - is an integral of Newton's Second Law.
 - never has any fluxes of energy across a control surface.
 - says that energy is always lost.
 - governs the energy of a system.

2 (5 points) You are given the two-dimensional velocity field $\mathbf{u} = (-y, 3x, 0)$. Compute its divergence and curl. Compute the streamline passing through the point (0, 1, 0). Now compute the change in the function $\psi \equiv 3x^2 + y^2$ along the streamline. Compute $\nabla^2 \psi$. What does this remind you of?

3 (10 points) A small tube of area 0.02 m² is inserted at the bottom of large tank below a $d_2 = 2$ m layer of fluid 2 of specific weight $\gamma_2 = 8$ kN m⁻³, which itself is below a $d_1 = 2$ m layer of fluid with $\gamma_1 = 4$ kN m⁻³. The open end of the tube is bent up to a height equal to the interface between the two fluids. Neglecting viscous effects, find (a) the velocity of fluid A as it exists the pipe; (b) the height to which the fluid jet will rise above the end of the pipe; (c) the momentum flux through the end of the tube.

4 (12 points) A high-speed channel flow (V_1, h_1) may "jump" to a low-speed condition (V_2, h_2) . The pressure at sections 1 and 2 is approximately hydrostatic, and wall friction is negligible. Use the continuity and momentum relations to obtain

$$h_2 = \frac{h_1}{2} \left[\left(1 + \frac{8V_1^2}{gh_1} \right)^{1/2} - 1 \right].$$

Show that Bernoulli's equation applied between sections 1 and 2 does not give this result. Derive an expression for the change in total head across the jump.