Name: \qquad

Quiz II

Daniel Bernoulli (1700-1782)

This is a 50 minute closed-book exam. Please put your name on the top sheet. Answer all four questions. Explain your working and state any assumptions you have made.

1 (3 points) Circle the correct answer.

1. Streamlines

- can never form closed loops.
- are everywhere parallel to the velocity field.
- are the same as particle paths.
- only exist in two-dimensional flows.
- can be obtained by solving algebraic equations.

2. $\nabla \cdot \mathrm{x}=$

- is a vector.
- 3 (in three dimensions).
- points from the origin to the point \mathbf{x}.
- depends on the position of the origin.
- makes no sense.

3. The first law of thermodynamics

- concerns entropy.
- is an integral of Newton's Second Law.
- never has any fluxes of energy across a control surface.
- says that energy is always lost.
- governs the energy of a system.

2 (5 points) You are given the two-dimensional velocity field $\mathbf{u}=(-y, 3 x, 0)$. Compute its divergence and curl. Compute the streamline passing through the point $(0,1,0)$. Now compute the change in the function $\psi \equiv 3 x^{2}+y^{2}$ along the streamline. Compute $\nabla^{2} \psi$. What does this remind you of?

3 (10 points) A small tube of area $0.02 \mathrm{~m}^{2}$ is inserted at the bottom of large tank below a $d_{2}=2 \mathrm{~m}$ layer of fluid 2 of specific weight $\gamma_{2}=8 \mathrm{kN} \mathrm{m}^{-3}$, which itself is below a $d_{1}=2 \mathrm{~m}$ layer of fluid with $\gamma_{1}=4 \mathrm{kN} \mathrm{m}^{-3}$. The open end of the tube is bent up to a height equal to the interface between the two fluids. Neglecting viscous effects, find (a) the velocity of fluid A as it exists the pipe; (b) the height to which the fluid jet will rise above the end of the pipe; (c) the momentum flux through the end of the tube.

4 (12 points) A high-speed channel flow (V_{1}, h_{1}) may "jump" to a low-speed condition $\left(V_{2}, h_{2}\right)$. The pressure at sections 1 and 2 is approximately hydrostatic, and wall friction is negligible. Use the continuity and momentum relations to obtain

$$
h_{2}=\frac{h_{1}}{2}\left[\left(1+\frac{8 V_{1}^{2}}{g h_{1}}\right)^{1 / 2}-1\right] .
$$

Show that Bernoulli's equation applied between sections 1 and 2 does not give this result. Derive an expression for the change in total head across the jump.

