Name: \qquad

Quiz V

Theodor Von Kármán (1881-1963)

This is a 50 minute closed-book exam. Please put your name on the top sheet. Answer all four questions. Explain your working and state any assumptions you have made.

1 (3 points) Circle the correct answer.

1. In a boundary layer,

- pressure vanishes at the wall.
- there is no pressure gradient normal to the boundary.
- viscosity is negligible.
- velocity satisfies Laplace's equation.
- the Reynolds number is always small.

2. The Reynolds stress

- depends on mean velocity gradients.
- vanishes in two-dimensional flows.
- is the turbulent contribution to shear stress.
- is proportional to the Reynolds number.
- appears in the mean continuity equation.

3. The Fanning friction factor

- can be found by solving a differential equation.
- applies only to irrotational flows.
- is independent of Reynolds number.
- is a non-dimensional version of head loss.
- has units of length.

2 (5 points) Describe the Reynolds tube experiment, explaining the different regimes and the role of the Reynolds number.

3 (10 points) Water at $49^{\circ} \mathrm{F}$ flows through a straight section of a 6 -in.-ID castiron pipe with an average velocity of 4 fps . The pipe is 1200 ft long, and there is an increase in elevation of 3 ft from the inlet of the pipe to its exit. Find the power required to produce this flow rate for the specified conditions. [Material properties: $\rho=62.3 \mathrm{lb}_{\mathrm{m}} \mathrm{ft}^{-3}, \nu=1.22 \times 10^{-5} \mathrm{ft}^{2} \mathrm{~s}^{-1}$. Use the transition formula

$$
\frac{1}{\sqrt{f_{f}}}=4 \log _{10} \frac{D}{e}+2.28-4 \log _{10}\left(4.67 \frac{D / e}{\operatorname{Re} \sqrt{f_{f}}}+1\right)
$$

Cast iron: $e=0.00085 \mathrm{ft}$. Also $1 \mathrm{hp}=550 \mathrm{lb}_{\mathrm{f}} \mathrm{ft} \mathrm{s}^{-1}$.]

4 (12 points) Carry out the momentum integral analysis for the case of no pressure gradient with $v_{x}=a \sin b y$ (you will have to solve for a and b.) Compute the momentum and displacement thicknesses. [The governing equation is

$$
\tau=\left.\mu \frac{\partial u}{\partial y}\right|_{y=0}=\rho U^{2} \frac{\mathrm{~d}}{\mathrm{~d} x} \int_{0}^{\delta} \frac{u}{U}\left(1-\frac{u}{U}\right) \mathrm{d} y .
$$

You may find the following integrals useful:

$$
\begin{aligned}
\int_{0}^{d} \sin \frac{\pi y}{2 d}\left(1-\sin \frac{\pi y}{2 d}\right) \mathrm{d} y & =d \frac{4-\pi}{2 \pi} \\
\int_{0}^{d}\left(1-\sin \frac{\pi y}{2 d}\right) \mathrm{d} y & \left.=d \frac{\pi-2}{\pi} .\right]
\end{aligned}
$$

