Solutions II.

1 The equation for the streamlines is $\mathrm{d} y / \mathrm{d} x=y / x$ which can be integrated to give $y=C \mathrm{e}^{x}$. The desired streamline passes through $(1,1)$ so $1=C$ e. Hence $y=\mathrm{e}^{x-1}$. The flow is steady so particle paths and streamlines are the same. We find that the point $(2, \mathrm{e})$ is on the same streamline with $x \geq 2$.

2 Compute the average velocity:
$\bar{u}=\frac{1}{h} \int_{0}^{h} U\left(\frac{y}{h}\right)^{n}\left(1-\frac{y}{h}\right) \mathrm{d} y=\frac{U}{h^{n+1}}\left[\frac{y^{n+1}}{n+1}-\frac{y^{n+2}}{h(n+2)}\right]_{0}^{h}=\frac{U}{(n+1)(n+2)}$.
To obtain $\bar{u}=U / 3$, we need to solve the quadratic $n^{2}+3 n+2=3$. This has solutions $n=\frac{1}{2}(-3 \pm \sqrt{13})$, i.e. -3.3 and 0.2 . The first one is physically impossible since the velocity would blow up at $y=0$, so we have $n=\frac{1}{2}(-3+$ $\sqrt{13})$.

3 This is a steady problem with constant density, so we can work with volume fluxes. We find $Q=56 \mathrm{ft}^{3} \mathrm{~s}^{-1}$ entering, so the average speed out is Q divided by the total area of the windows, $12 \mathrm{ft}^{2}$. We obtain $v=4.67 \mathrm{ft} \mathrm{s}^{-1}$. If the wind is at 45° to the door, the volume flux in is reduced to $56 \cos 45^{\circ} \mathrm{ft}^{2}$ and the average speed out is reduced by the same amount, so $v=3.30 \mathrm{ft} \mathrm{s}^{-1}$.

4 Write down conservation of mass of alcohol m_{a} in the form

$$
\frac{\mathrm{d} m_{a}}{\mathrm{~d} t}=0.4 q \rho_{a}-q \frac{m_{a}}{V}
$$

In this expression the first term is the mass flux of alcohol into the volume, since the volume of alcohol entering is 40% of the flow rate; the second term is the mass flux out. We solve this first-order linear ordinary differential equations with constant coefficients and find $m_{a}(t)=0.4 \rho_{a} V\left(1-\mathrm{e}^{-q t / V}\right)$, where we have used the result that $m_{a}(0)=0$. We are asked to find the concentration of alcohol $C_{a}=m_{a} /\left(\rho_{a} V\right)$, which is given by $C_{a}=0.4\left(1-\mathrm{e}^{-q t / V}\right)$. We are asked for t such that $C_{a}=0.1$, so we solve

$$
0.1=0.4\left(1-\mathrm{e}^{-0.2 t / 10}\right)
$$

so that $-0.02 t=\ln 3 / 4$. Hence $t=14.38$ minutes.

5 Conservation of mass:

$$
0=\frac{\partial}{\partial t} \int_{V} \rho \mathrm{~d} V+\int_{S} \rho(\mathbf{v} \cdot \mathbf{n}) \mathrm{d} S
$$

Assuming the velocity v and density ρ_{1} are constant over the orifice gives

$$
0=\frac{\partial}{\partial t}\left(\frac{4 \pi R^{3}}{3} \rho\right)+\pi a^{2}\left(-\rho_{1} v\right)
$$

Everything in the above expression is constant except ρ so we integrate to get

$$
\rho=\rho_{0}+\frac{3 a^{2} v \rho_{1}}{4 R^{3}}
$$

where ρ_{0} is the density at time $t=0$.

