Solutions III.

1 Consider a small cylindrical volume of fluid. Then from mass conservation $\rho A v$ is constant along the volume. Take the differential

$$
A v d d \rho+(\rho v) \mathrm{d} A+(\rho A) \mathrm{d} v=0
$$

and divide by $\rho A v$. Newton II gives $F_{1}-F_{2}=-\rho A_{1} v_{1}^{2}+\rho A_{2} v_{2}^{2}$, i.e. the change in F is given by

$$
\mathrm{d} F=-\mathrm{d}\left(\rho A v^{2}\right)=-\mathrm{d}(\dot{m} v)=-\dot{m} \mathrm{~d} v .
$$

This is the force exerted on the fluid. The force exerted by the fluid is the opposite.

2 Mass conservation in the rectangular control volume gives

$$
-\rho w U \delta+\dot{m}+\rho w \int_{0}^{\delta} u(y) \mathrm{d} y=0
$$

where \dot{m} is the mass flux out of the boundary layer. This gives

$$
\dot{m}=\rho w U \delta-\rho w U \int_{0}^{\delta}\left(2 y / \delta-y^{2} / \delta^{2}\right) \mathrm{d} y=\rho w U \delta / 3
$$

So fluid is leaving the boundary layer. In numbers $\dot{m}=1.24 \times 0.6 \times 30 \times 5 \times$ $10^{-3} / 3=0.0372 \mathrm{~kg} \mathrm{~s}^{-1}$.

3 Newton II in the same control volume in the x-direction (along the boundary) gives (assuming no pressure gradient across the volume)

$$
-\rho w U^{2} \delta+U \dot{m}+\rho w \int_{0}^{\delta} u(y)^{2} \mathrm{~d} y=F_{x}
$$

The tricky bit here is the second term: the momentum flux across the top of the boundary layer where the velocity is U. The force on the boundary is $-F_{x}$, i.e.

$$
(2 / 3) \rho w U^{2} \delta-\rho w U^{2} \int_{0}^{\delta}\left(2 y / \delta-y^{2} / \delta^{2}\right)^{2} \mathrm{~d} y=(2 / 15) \rho w U^{2} \delta
$$

This force is positive: there is a force in the direction of the flow on the plate. Its value is 0.4464 N . Note that is the actual force, not the force per unit area.

4 Steady frictionless flow. Force parallel to plate is from Newton II

$$
F=U \cos \theta \dot{m}
$$

since the flow is oriented at an angle θ to the plate. The horizontal components and vertical components of the flow are hence

$$
F_{x}=U \cos ^{2} \theta \dot{m}, \quad F_{y}=U \sin \theta \cos \theta \dot{m}
$$

So $F_{x}=2 F_{y}$ implies $\cos \theta=2 \sin \theta$, i.e. $\tan \theta=1 / 2$, which gives $\theta=26.6^{\circ}$.

5 Consider a control volume bounded by the radii r_{1} and r_{2} with depths and velocities h_{1}, h_{2} and v_{1}, v_{2} respectively. Conservation of mass gives

$$
2 \pi r_{1} \rho h_{1} v_{1}=2 \pi r_{2} \rho h_{2} v_{2}
$$

For momentum, we need to take a wedge-shaped volume with angle $\Delta \theta$, otherwise the forces integrate to zero by symmetry. Neglect frictional effects so the only forces acting are pressure forces. Newton II in the radial direction then gives

$$
\Delta \theta\left(r_{1} \frac{1}{2} \rho g h_{1}^{2}-r_{2} \frac{1}{2} \rho g h_{2}^{2}\right)=\Delta \theta\left(-r_{1} \rho h_{1} v_{1}^{2}+r_{2} \rho h_{2} v_{2}^{2}\right)
$$

The $\Delta \theta$ terms cancel, but the r_{i} terms survive. We obtain the following two equations

$$
r_{1} h_{1} v_{1}=r_{2} h_{2} v_{2}, \quad \frac{1}{2} g r_{1} h_{1}^{2}-\frac{1}{2} g r_{2} h_{2}^{2}=-r_{1} h_{1} v_{1}^{2}+r_{2} h_{2} v_{2}^{2}
$$

These two equations are unpleasant to solve. In the two-dimensional case, the r_{i} terms go away and progress can be made.

