Solutions VII.

1 The streamlines are hyperbolae. The vorticity is $\omega=-\nabla^{2} \psi=4$. This does not vanish so the flow is not irrotational and there is no velocity potential.

2 The boundary of the ellipse is a streamline with $\psi=1$. Flow is tangent to a streamline, so the boundary has no normal flow through it. This is the appropriate boundary condition for inviscid fluid. The vorticity of the flow is $\omega=-\nabla^{2} \psi=-2 / a^{2}-2 / b^{2}$.

3 In spherical polar coordinates this is

$$
\phi=U \cos \theta\left[r+\frac{a^{3}}{2 r^{2}}\right] .
$$

The radial velocity component is

$$
u_{r}=\frac{\partial \phi}{\partial r}=U \cos \theta\left[1-\frac{a^{3}}{r^{3}}\right]
$$

which vanishes on $r=a$. Hence there is no normal flow through the boundary. At infinity, $\phi \sim U x$, which corresponds to uniform flow $(U, 0)$. Hence this is the potential for flow past a sphere.

4 As in class, we use the tangential velocity component on the boundary of the cylinder, $u_{\theta}=2 U_{\infty} \sin \theta$. The pressure field from Bernoulli is $p=p_{\infty}-$ $2 \rho U_{\infty}^{2} \sin ^{2} \theta$. The drag is the force parallel to the flow, so we need to use $n_{x}=$ $\cos \theta$. Then we have

$$
D=-\int p n_{x} \mathrm{~d} S=-\int_{0}^{2 \pi}\left[p_{\infty}-2 \rho U_{\infty}^{2} \sin ^{2} \theta \cos \theta\right] a \mathrm{~d} \theta=0
$$

an example of d'Alembert's paradox. Along the front half of the cylinder, we have

$$
D==-\int_{-\pi / 2}^{p i / 2}\left[p_{\infty}-2 \rho U_{\infty}^{2} \sin ^{2} \theta \cos \theta\right] a \mathrm{~d} \theta=-2 a p_{\infty}+\frac{4}{3} a \rho U_{\infty}^{2} a
$$

(These are all forces per unit length.)

5 Water at $10 \mathrm{C}: \rho=1,000 \mathrm{~kg} \mathrm{~m}^{-3}, \mu=1.3 \times 10^{-3} \mathrm{~N} \mathrm{~s} \mathrm{~m}^{-2}, c=1450 \mathrm{~m}$ s^{-1} (speed of sound). Also $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$. Take $L=317 \mathrm{~m}$ (waterline of USS
Nimitz), $U=15.6 \mathrm{~m} \mathrm{~s}^{-1}$. Then the three nondimensional numbers are

$$
\begin{aligned}
\operatorname{Re} & =\frac{\rho U L}{\mu}=3.8 \times 10^{9} \\
\mathrm{Fr} & =\frac{U}{\sqrt{g L}}=0.28 \\
\mathrm{Ma} & =\frac{U}{c}=0.011
\end{aligned}
$$

