Solutions VIII.

1 Five parameters: $\Delta p\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right], D[\mathrm{~L}], \rho\left[\mathrm{ML}^{-3}\right], \omega\left[\mathrm{T}^{-1}\right], \mathrm{Q}\left[\mathrm{MT}^{-1}\right]$. Three dimensions. Two non-dimensional parameters. No unique choice; take ρ, D and ω as repeating parameters. Get

$$
\pi_{1}=\frac{\Delta p}{\rho D^{2} \omega^{2}}, \quad \pi_{2}=\frac{Q}{\rho D^{3} \omega}
$$

2 Six parameters: $t[\mathrm{~T}], \ell[\mathrm{L}], d[\mathrm{~L}], D[\mathrm{~L}], \mu\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right], \Delta \gamma\left[\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right]$. Three dimensions. Three non-dimensional parameters. No unique choice, although there are two obvious geometric ratios. Take e.g.

$$
\pi_{1}=\frac{D t \gamma}{\mu}, \quad \pi_{2}=\frac{\ell}{D}, \quad \pi_{3}=\frac{d}{D}
$$

Since $\pi_{1}=f\left(\pi_{2}, \pi_{3}\right)$, obtain

$$
t=\frac{\mu}{\gamma} D \gamma f\left(\frac{\ell}{D}, \frac{d}{D}\right)
$$

Hence if one takes a fluid of known viscosity and specific weight and carries out the experiment, one obtains a number π_{1} that depends on the dimensions of the apparatus. Now if one takes a fluid with unknown viscosity but known specific density and carries out the experiment, obtain t. Then using the known value of π_{1} can obtain μ.

3 Take $\mathrm{Fr}=U / \sqrt{g H}$ (this is not the only possible definition). The value of g is fixed, while $H_{m}=0.1 \mathrm{~m}$ and $H p=3 \mathrm{~m}$. We require $\mathrm{Fr}_{m}=\operatorname{Fr}_{p}$, so $U_{p}=$ $U_{m} \sqrt{H_{p} / H_{m}}=2 \sqrt{30}=10.95 \mathrm{~m} \mathrm{~s}^{-1}$.

4 Take transition on flat plate to occur at $\operatorname{Re}=5 \times 10^{5}$. Here $U=20 \mathrm{~m} \mathrm{~s}-1$, $\rho=1000 \mathrm{~kg} \mathrm{~m}^{-3}$ and $\nu=1.3 \times 10^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ (at $10^{\circ} \mathrm{C}$). So

$$
L=\frac{\operatorname{Re} \nu}{U}=\frac{1.3 \times 10^{-6} \times 5 \times 10^{5}}{20}=0.0325 \mathrm{~m}
$$

5 Assume effects of ground are negligible and that cross-section is cylindrical. Then the drag coefficient is $C_{D}=0.35$ (approximately - see Fig. 12.2 on p. 151). Use $D=6 \mathrm{ft}, U=20 \mathrm{mph}=29.3 \mathrm{ft} \mathrm{s}^{-1}, H=20 \mathrm{ft}, \nu=1.74 \times 10^{-4} \mathrm{ft}^{2} \mathrm{~s}^{-1}$ and $\rho=0.00225$ slugs ft^{-3} (at $90^{\circ} \mathrm{F}$). Now $F_{D}=\frac{1}{2} \rho U^{2} A C_{D}$, where $A=H D$ is the projected area. Hence $F_{D}=40.56 \mathrm{lb}_{f}$.

