CENG101A: Introductory Fluid Mechanics Fall Quarter 2006 http://maecourses.ucsd.edu/mae210a

Solutions VIII.

1 Five parameters: $\Delta p [ML^{-1}T^{-2}]$, D [L], $\rho [ML^{-3}]$, $\omega [T^{-1}]$, $Q [MT^{-1}]$. Three dimensions. Two non-dimensional parameters. No unique choice; take ρ , D and ω as repeating parameters. Get

$$\pi_1 = \frac{\Delta p}{\rho D^2 \omega^2}, \qquad \pi_2 = \frac{Q}{\rho D^3 \omega}$$

2 Six parameters: t [T], ℓ [L], d [L], D [L], μ [ML⁻¹T⁻¹], $\Delta \gamma$ [ML⁻²T⁻²]. Three dimensions. Three non-dimensional parameters. No unique choice, although there are two obvious geometric ratios. Take e.g.

$$\pi_1 = \frac{Dt\gamma}{\mu}, \qquad \pi_2 = \frac{\ell}{D}, \qquad \pi_3 = \frac{d}{D}.$$

Since $\pi_1 = f(\pi_2, \pi_3)$, obtain

$$t = \frac{\mu}{\gamma} D\gamma f\left(\frac{\ell}{D}, \frac{d}{D}\right)$$

Hence if one takes a fluid of known viscosity and specific weight and carries out the experiment, one obtains a number π_1 that depends on the dimensions of the apparatus. Now if one takes a fluid with unknown viscosity but known specific density and carries out the experiment, obtain *t*. Then using the known value of π_1 can obtain μ .

3 Take $\text{Fr} = U/\sqrt{gH}$ (this is not the only possible definition). The value of g is fixed, while $H_m = 0.1$ m and Hp = 3 m. We require $\text{Fr}_m = \text{Fr}_p$, so $U_p = U_m\sqrt{H_p/H_m} = 2\sqrt{30} = 10.95$ m s⁻¹.

4 Take transition on flat plate to occur at Re = 5×10^5 . Here U = 20 m s–1, $\rho = 1000$ kg m⁻³ and $\nu = 1.3 \times 10^{-6}$ m²s⁻¹ (at 10 °C). So

$$L = \frac{\text{Re}\nu}{U} = \frac{1.3 \times 10^{-6} \times 5 \times 10^5}{20} = 0.0325\text{m}.$$

5 Assume effects of ground are negligible and that cross-section is cylindrical. Then the drag coefficient is $C_D = 0.35$ (approximately – see Fig. 12.2 on p. 151). Use D = 6 ft, U = 20 mph = 29.3 ft s⁻¹, H = 20 ft, $\nu = 1.74 \times 10^{-4}$ ft² s⁻¹ and $\rho = 0.00225$ slugs ft⁻³ (at 90 °F). Now $F_D = \frac{1}{2}\rho U^2 A C_D$, where A = HD is the projected area. Hence $F_D = 40.56$ lb_f.