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Solutions IX.

1 Height of the Sears Tower: 442 m. Width: 150 ft = 45.75 m (assume uniform
square cross-section – not true). Then h/W = 9.66. Take ρ = 1.25 kg m−3. Table
9.3 on p. 449 of e.g. Fox & McDonald gives CD = 1.2 (cylinder would probably
work OK). Assume U = 10 m s−1. Then FD = 1.52× 106 N.

2 For small animals, the Reynolds number would be very small due to low
velocity flow and small size of the fish. Thus flow would be laminar, and most
of the drag force would be due to the viscous forces, resulting in a symmetric
flow and no flow separation from the body.

For somewhat larger animals, flow might become unstable at the end of the
body since the size of the fish and flow velocity might increase, resulting in
higher Reynolds number and flow separation might occur somewhere along
the body.

For whales, flow might become turbulent at some point along the body
(high Reynolds number due to high velocity and size of the animal), prevent-
ing early flow separation and thus reducing drag. For this flow inertial forces
would be the major contributor to the drag force and the inertial forces nearly
negligible.

The cross-section of the swimming animal is similar to the cross-section of
the airplane wing, or airfoil. The airfoil is a streamlined body designed to delay
flow separation and thus reduce drag during given flow conditions.

3 Find constants a and b. Boundary conditions: (i) u = 0 at y = 0: automatic;
(ii) u = U at y = δ: a sin δ = U ; (iii) du/dy = 0 at y = δ: ab cos bδ = 0; (iv)
(optional) d2u/dy2 = 0 at y = 0: automatic. Condition (iii) gives bδ = nπ/2.
The profile with n = 1 is the correct one (the others have reversed flow). Then
(i) gives a = U . This gives u = U sin (πy/2δ).

Now solve
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Separate variables and get
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Taking δ = 0 at x = 0 gives
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The Blasius result has 5 rather than 4.8.

4 Velocity profile u = U sin (πy/2δ). From 3 we have momentum thickness:
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Displacement thickness:
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Special problem 1 Should be ∂x = 0. The only relevant component of NS is
the x-component. Fully-developed means that the u·∇u terms vanish. There
is no pressure gradient either. The only viscous terms that survive are the ∂2

y

ones, so
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Boundary conditions: initial condition of rest, so u = 0 at t = 0. No-slip at the
moving boundary: u = 1 at y = 0. Flow is at rest far from the plate: u → 0 as
y →∞.
2 Use chain rule:
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Substitute into the diffusion equation:
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Boundary conditions y = 0 corresponds to η = 0, so there f = 1. On the other
hand t = 0 and y → ∞ both correspond to η → ∞, so there f = 0. Hence we
have

f ′′ + 2ηf ′ = 0 with f = 1 at η = 0 and f = 0 as η →∞.

3 Separate variables or use an integrating factor to get

f ′ = Ae−η2
.



Integrate once again to get
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The boundary condition at the origin gives B = 1. The boundary condition as
η →∞ gives A
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π

∫ η

0

e−u2
du.

4 Should be t = x/U . Calculate wall stress:
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Apart from the minus sign, this is the same as (12-30) with π−1/2 = 0.5642
replacing 0.332.
5 We are given that f(1.82) = 0.01 so the edge of boundary layer is at η =
δ/
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