CENG101A: Introductory Fluid Mechanics Fall Quarter 2006 http://maecourses.ucsd.edu/mae210a

Course information

Times

Lectures: MWF 10:00–10:50 am in CENTR 212. Lectures/quizzes: Fridays 2:00–2:50 pm in CENTR 105. Professor's office hours: Mondays and Wednesdays 2:00–3:00 pm in EBU II 574. TA: Vladimir Guzaev (vguzaev@ucsd.edu). TA problem sessions: TBD. TA office hours: TBD.

Text

Welty, Wicks, Wilson & Rorrer, Fundamentals of Momentum, Heat, and Mass Transfer, 4th Edition, Wiley, 2001. Chapters 1–14. (Also for CENG101B.) I have placed other books on reserve that you may find useful.

Homework

Homework will be assigned every week and will be due by a specific time the following week. Homework should be turned in to the TA in the fourth hour. No late homework will be accepted. I encourage you to discuss the homework among yourselves, but what you write and hand in should be your own work. Some presentation guidelines: print name clearly at top of page; box final answers, especially for problems with multiple (a, b & c) parts; label multiple parts of problems (a, b & c) clearly; list assumptions clearly. Solutions will be placed on the website after the due date.

Quizzes

There will be five hourly quizzes every other Friday starting October 6. There will be no make-up quizzes. All exams are closed book. Bring pencil and calculator to all quizzes.

Final

The final will be on Monday December 4, 8:00–11:00 am. A make-up exam will only be provided for medical reasons with proper documentation from a physician. It will cover the material lectured during the course and the material assigned as reading.

Grading

Method A: Curve based on: Homework 10%, 4 best of 5 quizzes 40%, final 50%. Method B: Absolute scale based on final: A > 80%, B > 70%, C > 55%, D > 40%.

Your grade will be computed by methods A and B and you will receive the higher of the two. I may rescale the different components (homework, quizzes, final) separately to arrive at the final grade. I do not recommend planning on Method B from the beginning. Method A is more reliable.

Cheating

I remind you of UCSD's policy on academic integrity. Action will be taken in cases of cheating. Don't make it happen to you.

Stefan G. Llewellyn Smith

Mechanical and Aerospace Engineering Dept.	Tel:	(858) 822-3475
University of California, San Diego	Fax:	(858) 534-4543
La Jolla, CA 92093-0411	E-mail:	sgls@ucsd.edu
http://www-mae.ucsd.edu/~sgls		-

Research interests:

Fluid dynamics. Acoustics and fluid-structure interactions. Asymptotic methods. Industrial mathematics.

Interests:

Japanese; rowing (B); tennis (C); surfing (D).

Education:

• Queens' College, University of Cambridge, 1993-Oct 1996. PhD 1996.

• Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1992–1993.

• Queens' College, University of Cambridge, 1988–1992. Certificate of Advanced Study (Part III of the Mathematical Tripos) with Distinction, 1992. BA (Honours) First Class (Parts IA, IB & II), 1991.

Some recent publications:

Gille, S. T., Llewellyn Smith, S. G. & Statom, N. M. 2005 Global observations of the land breeze. *Geophys. Res. Lett.*, *32*, L05605, doi:10.1029/2004GL022139.
Conroy, D. T., Llewellyn Smith, S. G. & Caulfield, C. P. 2005 Evolution of a chemically reacting plume in a ventilated room. *J. Fluid Mech.*, *537*, 221–253.

• Petrelis, F., Llewellyn Smith, S. G. & Young, W. R. 2006 Tidal conversion at a submarine ridge. *J. Phys. Oceanogr.*, *36*, 1053–1071, doi: 10.1175/JPO2879.1.

• Adda-Bedia, M. & Llewellyn Smith, S. G. 2006 Supersonic and subsonic states of dynamic contact between elastic bodies. *Proc. R. Soc. Lond.* A., 462, 2781–2795, doi:10.1098/rspa.2006.1709.