Equations you should memorize

Conduction:

Convection:

 $q = h\Delta T$.

 $\mathbf{q} = -k\nabla T.$

Heat equation: general form for incompressible flow

$$\rho c_{v} \frac{\mathrm{D}T}{\mathrm{D}t} = \nabla \cdot (k \nabla t) + \dot{q} + \Phi.$$

Neglect Φ , the viscous dissipation. With no fluid motion, k constant and $c_p = c_v$, get

$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T + \frac{\dot{q}}{\rho c_p}$$

with $\alpha = k / \rho c_p$.

Lumped system: if the Biot modulus (ratio of internal resistance of solid to external resistance) Bi = hR/k < 0.1, temperature in the body is a function only of time. With no heat sources,

$$\rho V c_p \frac{\mathrm{d}T}{\mathrm{d}t} = hA(T_{\infty} - T).$$

Nondimensional numbers for convection: Nusselt number Nu = hD/k: ratio of conductive resistance of fluid to convective resistance. Prandtl number $Pr = v/\alpha$. Stanton number St = Nu/(Re Pr). Grashof number $Gr = \gamma L^3 \Delta T$. Rayleigh number Ra = Gr Pr.

Correlations: I will give all the correlations you need.

Heat exchangers (F(R, P) method): single-pass single-tube

$$Q = UA \frac{\Delta T_2 - \Delta T_1}{\ln\left(\Delta T_2 / \Delta T_1\right)} + UQ\Delta T_{lm}.$$

More complicated: use $Q = UAF\Delta T_{lm}$.

Heat exchangers (NTU method):

$$\varepsilon = \frac{\text{actual heat transfer}}{\text{maximum possible}}, \quad \text{NTU} = UA/C_{min}.$$

Radiation: $\rho + a + \tau = 1$: reflectivity; absorptivity; transmissivity. Opaque body: $\tau = 0$. Black body: a = 1. Grey body: a < 1 independent of frequency.

Kirchhoff's law: a = e for a system in thermodynamic equilibrium. Planck's law: \mathbf{r} 5

$$q_{b\lambda}^{e} = \frac{2\pi c^2 h \lambda^{-5}}{\exp\left(ch/\kappa \lambda T\right) - 1}.$$

Stefan–Boltzmann law: $q_b^e = \sigma T^4$, where $\sigma = 5.67 \times 10^{-8}$ W m⁻² K⁻⁴. **View factors:** F_{12} : fraction of black body radiation leaving A_1 which reaches A_2 . Satisfies $A_i F_{ij} = A_j F_{ji}$ and $\sum_{j=1}^N F_{ij} = 1$.