Quiz II

This is a 50 minute closed-book exam; no notes. Please put your name on the top sheet. Answer all three questions. Explain your working and state any assumptions you have made.

- 1 (3 points) Circle the correct answer.
 - 1. The heat equation
 - is the same as the Navier-Stokes equation.
 - cannot be solved.
 - includes h.
 - can be derived from the First Law of Thermodynamics.
 - only holds in a vacuum.
 - 2. For one-dimensional steady-state conduction,
 - the temperature gradient is constant.
 - the temperature is zero.
 - the solution is independent of the boundary conditions.
 - heat generation is always important.
 - the heat flux decays like 1/r.
 - 3. Fourier's equation
 - · is a conservation law.
 - is a constitutive law that relates heat flux to temperature gradient.
 - governs radiative heat transfer.
 - is a reformulation of the First Law of Thermodynamics.
 - always leads to steady-state problems.

2 (7 points) The material "Quadboard" has a thermal conductivity that is not constant, but that behaves as $k = \alpha (T - T_0)^2$. What are the units of α ? For a steady one-dimensional problem, what is the heat flux? Write down the governing equation for temperature. Solve it for the case where $T = T_0$ at x = 0 and $T = 2T_0$ at x = L. Evaluate the heat flux q. What constant value of k gives the same value of q? [Note: the ODE $\theta^2 d\theta/dx = C$ can be solved by separating variables.]

W =
$$\times$$
 (T-Ta)¹ \Rightarrow α is $\frac{W}{WK3}$

Heat flux: $q_{x} = -k \frac{dT}{du} = -\kappa (T-Ta)^{1} \frac{dT}{du}$

Steady problem, us heat generalism: $q_{x} = can taut = C$
 $= -\kappa (T-Ta)^{1} \frac{dT}{du} = C$

Separate variables: $-\kappa (T-Ta)^{2} sT = Cdu$
 $= -\frac{1}{3} \kappa (T-Ta)^{3} = Cu + D$

BCs: $\begin{cases} 0 = D \\ -\frac{1}{3} \kappa (2Ta-Ta)^{2} = CL + D \end{cases}$ i.e. $-\frac{1}{3} \kappa Ta^{3} = CL$

Flux $q_{x} = C = -\frac{\kappa Ta^{3}}{3L}$

Construct $k: T = Ax + B = BCs: Ta = B$
 $= \frac{2Ta : AL + B}{3}$
 $= \frac{2Ta : AL + B}{3}$

Equals: $-ke^{\frac{Ta}{0}} = -\frac{\kappa Ta^{3}}{3L}$

Equals: $-ke^{\frac{Ta}{0}} = -\frac{\kappa Ta^{3}}{3L}$
 $= -\frac{\kappa Ta^{3}}{3L}$

3 (10 points) Hot water at 70°C flows along a 2-cm diameter copper pipe. The outside air temperature is 25°C. If the pipe is wrapped in 2 cm of fiberglass ($k = 0.036 \text{ Wm}^{-1} \text{K}^{-1}$), what is the heat flow per unit meter of pipe? How much insulation is required to reduce the heat flow by a factor of two? If there is a 1-mm thick layer of scale (essentially calcium carbonate with $k = 2.5 \text{ Wm}^{-1} \text{K}^{-1}$) on the inside of the pipe, what does the heat flux become? Justify in words why you have ignored the effect of the copper ($k = 400 \text{ Wm}^{-1} \text{K}^{-1}$) pipe.

Cylinder:
$$R = \frac{\ln r \cdot (r_i)}{2\pi k L}$$

$$Q = \frac{OT}{\sum R}$$

(a) Filentian from 1 to 3cm radius
$$\frac{Q}{L} = \frac{2\pi k \Delta T}{\ln r_0 (r_i)} = \frac{2\pi \times 0.036 \times k5}{\ln 3} = 9.2051 \frac{lm}{lm}$$

(b) Divide by 2? $\ln \frac{r_{max}}{r_i} = 2 \ln \frac{r_{max}}{r_i} = \frac{r_{max}}{r_i} \cdot \left(\frac{r_{max}}{r_i}\right)^{-9}$

i.e. 8 cm thickness

(c) Calcium carbonate from o.s to 1cm
$$\frac{Q}{L} = \frac{2\pi \Delta T}{\ln r_0 (r_i)} \cdot \frac{lm}{lm} \cdot \frac{r_i (r_i)}{lm} = \frac{2rr \times kT}{lm} \cdot \frac{lm}{lm} \cdot \frac{1}{lm} \cdot \frac{1}{lm} \cdot \frac{1}{lm} = 9.2751 \frac{lm}{lm}$$

(d) Copper pipe: $l = l \times l \times lm$

2

so be reles « le coulers re bis

(not true for pipe)