CENG101B Heat Transfer

Quiz II

This is a 50 minute closed-book exam; no notes. Please put your name on the top sheet. Answer all three questions. Explain your working and state any assumptions you have made.

- 1 (3 points) Circle the correct answer.
 - 1. The heat equation
 - is the same as the Navier–Stokes equation.
 - cannot be solved.
 - includes *h*.
 - can be derived from the First Law of Thermodynamics.
 - only holds in a vacuum.
 - 2. For one-dimensional steady-state conduction,
 - the temperature gradient is constant.
 - the temperature is zero.
 - the solution is independent of the boundary conditions.
 - heat generation is always important.
 - the heat flux decays like 1/r.
 - 3. Fourier's equation
 - is a conservation law.
 - is a constitutive law that relates heat flux to temperature gradient.
 - governs radiative heat transfer.
 - is a reformulation of the First Law of Thermodynamics.
 - always leads to steady-state problems.

2 (7 points) The material "Quadboard" has a thermal conductivity that is not constant, but that behaves as $k = \alpha (T - T_0)^2$. What are the units of α ? For a steady one-dimensional problem, what is the heat flux? Write down the governing equation for temperature. Solve it for the case where $T = T_0$ at x = 0 and $T = 2T_0$ at x = L. Evaluate the heat flux *q*. What constant value of *k* gives the same value of *q*? [Note: the ODE $\theta^2 d\theta/dx = C$ can be solved by separating variables.]

3 (10 points) Hot water at 70°C flows along a 2-cm diameter copper pipe. The outside air temperature is 25°C. If the pipe is wrapped in 2 cm of fiberglass ($k = 0.036 \text{ Wm}^{-1}\text{K}^{-1}$), what is the heat flow per unit meter of pipe? How much insulation is required to reduce the heat flow by a factor of two? If there is a 1-mm thick layer of scale (essentially calcium carbonate with $k = 2.5 \text{ Wm}^{-1}\text{K}^{-1}$) on the inside of the pipe, what does the heat flux become? Justify in words why you have ignored the effect of the copper ($k = 400 \text{ Wm}^{-1}\text{K}^{-1}$) pipe.