Quiz II

This is a 50 minute closed-book exam; no notes. Please put your name on the top sheet. Answer all three questions. Explain your working and state any assumptions you have made.

1 (3 points) Circle the correct answer.

1. The effectiveness of a finned heat exchanger with no-flux end condition

- is independent of its width.
- tends to 0 as the fin becomes longer.
- can be computed in two ways: by integrating over the base or by integrating over the surface.
- is the same for all fins of the same shape.
- was derived in class for short fins.

2. For small Biot numbers,

- the temperature along the boundary of the solid is equal to the ambient temperature.
- temperature changes linearly in time inside the solid.
- the solution one uses is only valid for small $X_{F o}$.
- one can find the solution by solving an ordinary differential equation.
- the solution is independent of the ambient temperature.

3. The unsteady heat equation has a similarity solution for a semi-infinite solid

- because there is no natural length scale for the problem.
- because there is no time dependence
- for narrow solids.
- that holds in a narrow layer near the boundary.
- that is independent of the thermal diffusivity α.

2 (7 points) A 52\&7/8-inch long, 2-inch wide and $1 / 2$-inch thick steel blade is put in a fire to obtain an impressive effect for a blockbuster Hollywood trilogy. Given that a bright cherry-red glow is visible at $1000^{\circ} \mathrm{C}$ and that the fire is at $1600^{\circ} \mathrm{C}$, how long does it take for the sword to reach a photogenic temperature? [The properties of steel vary over such a large temperature range; take the values (actually for iron) at $500^{\circ} \mathrm{C}$ of $k=61 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, c_{p}=532 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ and $\rho=7,870 \mathrm{~kg} / \mathrm{m}^{3}$ as representative. Assume there is little air flow directly past the blade, so that the heat transfer coefficient has the value of $20 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$.]

3 (10 points) A thin rectangular slab of silicon of half-thickness $10-\mathrm{cm}$ (thermal diffusivity $\alpha=$ $0.8 \mathrm{~cm}^{2} / \mathrm{s}$) at $80^{\circ} \mathrm{C}$ is immersed in a bath of water that is maintained at $4^{\circ} \mathrm{C}$. What are the temperatures at the midpoint and surface of the slab after 1 second? After 1 minute? [The similarity solution for transient heat conduction with an imposed temperature at $y=0$ in the semi-infinite slab $y>0$ is given by $\Theta=\operatorname{erf}(y / \sqrt{4 \alpha t})$. The thermal penetration depth is $\delta_{T}=4(\alpha t)^{1 / 2}$. The temperature in a thin slab for not-too-short times is given by $\Theta_{1}=A_{1} \exp \left(-\lambda_{1}^{2} X_{F o}\right) \cos \lambda_{1} \xi$, where ξ is the non-dimensional coordinate measured from the midpoint of the slab $(\xi=0)$ to its surface $(\xi=1)$. See the graphs on the next page.]

Graphs

