Vector calculus in (almost) one page.

You are expected to know the following operators and formulas. We use Cartesian coordinates $\mathbf{r}=\mathbf{x}=(x, y, z)=\left(x_{1}, x_{2}, x_{3}\right)$. We write the vectors \mathbf{a} and \mathbf{b} as $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$; $f(\mathbf{x})$ is a scalar function of \mathbf{x} and $\mathbf{u}(\mathbf{x})=\left(u_{1}, u_{2}, u_{3}\right)$ is a vector function of \mathbf{x}.
Dot product: $\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$. The dot product of two vectors is a scalar.
Cross product: $\mathbf{a} \times \mathbf{b}=\left(a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right)$. The cross product of two vectors is a vector.

Gradient:

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \frac{\partial f}{\partial x_{3}}\right)
$$

The gradient of a scalar function is a vector.

Divergence:

$$
\nabla \cdot \mathbf{u}=\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{3}}{\partial x_{3}} .
$$

The divergence of a vector function is a scalar.
Curl:

$$
\nabla \times \mathbf{u}=\left(\frac{\partial u_{3}}{\partial x_{2}}-\frac{\partial u_{2}}{\partial x_{3}}, \frac{\partial u_{1}}{\partial x_{3}}-\frac{\partial u_{3}}{\partial x_{1}}, \frac{\partial u_{2}}{\partial x_{1}}-\frac{\partial u_{1}}{\partial x_{2}}\right) .
$$

The curl of a vector function is a vector.

Differentials:

$$
\mathrm{d} f=\frac{\partial f}{\partial x_{1}} \mathrm{~d} x_{1}+\frac{\partial f}{\partial x_{2}} \mathrm{~d} x_{2}+\frac{\partial f}{\partial x_{3}} \mathrm{~d} x_{3} .
$$

Divergence theorem:

$$
\int_{V} \nabla \cdot \mathbf{u} \mathrm{~d} V=\int_{S} \mathbf{u} \cdot \mathbf{n} \mathrm{~d} S
$$

where \mathbf{n} is the unit vector oriented outward from the volume V.

Stokes' theorem:

$$
\int_{S} \nabla \times \mathbf{u} \cdot \mathbf{n} \mathrm{d} S=\int_{C} \mathbf{u} \cdot \mathrm{~d} \mathbf{l},
$$

where C is any curve bounding the open surface S.
Show that: given $\mathbf{a}=(2 x, 3 x y, 0), \mathbf{b}=(2, x, 0)$ and $f=3 x y^{2}, \mathbf{a} \cdot \mathbf{b}=4 x+3 x^{2} y, \nabla \cdot \mathbf{a}=2+3 x$, $\mathbf{a} \times \mathbf{b}=\left(0,0,2 x^{2}-6 x y\right), \nabla \times \mathbf{a}=(0,0,3 y), \nabla f=\left(3 y^{2}, 6 x y, 0\right), \nabla \times f=$ absurd.
Summation convention: The right way to do vector calculus is using suffices. The vector \mathbf{a} is written as a_{i} and repeated indices are summed over. The above operators become

$$
\mathbf{a} \cdot \mathbf{b}=a_{i} b_{i} ; \quad[\mathbf{a} \times \mathbf{b}]_{i}=\varepsilon_{i j k} a_{j} b_{k}
$$

where $\varepsilon_{i j k}=1$ if (i, j, k) are an even permutation of $(1,2,3),-1$ if they are an odd permutation and 0 otherwise.

Treating the gradient operator as the vector ∇, which is ∂_{i} in suffix notation, the other equations become

$$
[\nabla f]_{i}=\frac{\partial f}{\partial x_{i}} ; \quad \nabla \cdot \mathbf{u}=\frac{\partial u_{i}}{\partial x_{i}} ; \quad[\nabla \times \mathbf{u}]_{i}=\varepsilon_{i j k} \frac{\partial u_{k}}{\partial x_{j}} ; \quad \mathrm{d} P=\frac{\partial P}{\partial x_{i}} \mathrm{~d} x_{i} .
$$

This is the only way to do tensors, which have two or more free suffices.

