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Abstract

A new derivation, and representation, of the classical solution for a translating
hollow vortex pair originally discovered by H. C. Pocklington in 1895 [Proc.
Camb. Phil. Soc., 8, 178–187] is presented. The derivation makes use of a
special function known as the Schottky–Klein prime function. The new rep-
resentation of the hollow vortex pair facilitates an investigation of the linear
stability properties of this configuration, something apparently not previously
studied in the literature. We show here that the hollow vortex pair is linearly
stable to infinitesimal irrotational perturbations provided the area of the two
vortices is below a critical value.
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1. Introduction

The theoretical study of vortex pairs, or vortex dipoles, comprising two
counter-rotating vortices of equal and opposite sign is an important one in fluid
mechanics. Such vortex configurations generally travel at constant speed in a
rectilinear motion: for example, two point vortices [1] of circulations ±Γ and
separated by distance b will travel at speed

U0 =
Γ

2πb
. (1)

The Lamb dipole [2], for which the vorticity is linearly related to the stream-
function, is the best-known vortex pair with distributed vorticity [1]. Deem &
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Zabusky [3] used numerical methods to compute the equilibrium configurations
of two counter-rotating vortex patches. A vortex patch is a two-dimensional
region of constant vorticity. It is a popular vortex model that has found abun-
dant application in the literature [1]. Pierrehumbert [4] has also performed a
numerical study of the counter-rotating pair of vortex patches. Another trav-
elling vortex pair solution with distributed vorticity is due to Pocklington [5],
who used elliptic function theory to derive analytical solutions for two counter-
rotating hollow vortices travelling at uniform speed. Here we understand a
hollow vortex, following earlier authors [5, 6, 1], to be a finite-area, constant
pressure region having a non-zero circulation around it. It is a much less com-
monly used model of vorticity, although it has been the subject of a revival of
interest in recent work [7, 8, 9]. Tanveer [10] used a numerical scheme based
on conformal mappings to generalize Pocklington’s solution to the case where
the interior of the vortex has non-zero uniform vorticity. Tanveer’s solutions
are also natural extensions of the solution due to Sadovskii [11], who considered
the case of two touching vortices and allowed discontinuities in the tangential
velocity across the boundaries of the uniform vorticity regions.

When it comes to stability, the point vortex pair is easily shown to be lin-
early stable to infinitesimal perturbations. Cavazza et al. [12] have numerically
studied the stability of the Lamb dipole by adding initial perturbations. They
find that if the dipole is subjected to elliptic deformation, it sheds some vortic-
ity in its wake and then returns to a circular shape with a smaller radius. The
linear stability properties of the uniform vortex patch solutions, as calculated
numerically by Deem & Zabusky [3], do not appear to have been previously
studied in the literature but, according to Saffman [1], “it is believed that they
are stable”. To the best of the authors’ knowledge, the linear stability properties
of Pocklington’s hollow vortex pair has not been studied either. The purpose of
the present paper is to revisit Pocklington’s hollow vortex pair and to present,
apparently for the first time, a full analysis of its linear stability. Interestingly,
we find that the hollow vortex pair is only linearly stable provided the size of
the vortices is sufficiently small.

This paper also presents a new mathematical derivation of Pocklington’s so-
lution. This not only provides a convenient basis for the linear stability analysis,
but it is also valuable in that it avoids complications associated with the use of
standard elliptic functions exploited by Pocklington in his original derivation [5].
Indeed, Pocklington’s original paper [5] contains some mathematical errors that
have been pointed out, and corrected, by Tanveer [13]. Here we find a family of
solutions for steadily translating hollow vortex pairs with a single mathematical
parameter ρ governing the size of the vortices. The solutions are described by
a conformal mapping from the annulus ρ < |ζ| < 1 to the fluid region exterior
to the vortex pair given by

z(ζ) = C

∫ ζ

−√ρ

{
P (ζ ′
√
ρeiΘ, ρ)P (ζ ′

√
ρe−iΘ, ρ)

P (ζ ′/
√
ρ, ρ)P (ζ ′

√
ρ, ρ)

}2

dζ ′, (2)
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Figure 1: Schematic of a hollow vortex pair with circulations ±Γ propagating in the positive
y direction with speed U .

where C is a normalization constant and Θ = Θ(ρ) is a real constant dependent
on the choice of ρ. The special function P (ζ, ρ) is a version of the Schottky–
Klein prime function [14] on the annulus ρ < |ζ| < 1. The two circles |ζ| = ρ, 1
map to the two boundaries of the hollow vortices. The solution for the point
vortex pair is retrieved in the limit ρ → 0. It is our view that formula (2) is
a more concise and convenient, representation of the translating hollow vortex
pair than that given by Pocklington [5].

2. Mathematical formulation

We will seek solutions, in a complex z = x + iy-plane, for which the pair is
steadily translating parallel to the imaginary axis with speed U . One vortex is
assumed to have its centroid on the positive real axis and to have circulation
−Γ with Γ > 0; the other is on the negative real axis with circulation +Γ. This
configuration is expected to translate steadily upwards parallel to the positive
imaginary axis with some speed U > 0. Figure 1 shows a schematic of this
configuration.

It is appropriate to move to a co-travelling frame in which the configuration
is steady. The complex potential associated with the flow in the co-travelling
frame is w(z) where, as z →∞,

w(z) ∼ U exp(−iχ)z + locally analytic function, (3)
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where χ = −π/2 so that the uniform flow is in the direction of the negative
imaginary axis in the co-travelling frame. Apart from this singularity at infinity,
w(z) is analytic everywhere outside the hollow vortices.

Consider a conformal mapping z(ζ) from some annulus ρ < |ζ| < 1 to the
fluid region exterior to two hollow vortices. Suppose that |ζ| = 1 maps to
the right-most vortex and |ζ| = ρ maps to the left-most vortex. We will seek
symmetric solutions where each hollow vortex is the reflection of the other about
the imaginary axis. In this case, it can be argued that the circle |ζ| = √ρ maps
to the vertical axis of symmetry between the two vortices. Let β be the point
on this circle mapping to infinity and suppose that

z(ζ) =
a

ζ − β
+ locally analytic function, (4)

where, using a rotational degree of freedom of the Riemann mapping theorem,
we can suppose that a is real and positive. This means that we must have
β =

√
ρ so that the portion of real ζ-axis

√
ρ < ζ < 1 maps to the positive

real z-axis between the vortex centred on the positive real axis and x = +∞.
Similarly, the portion ρ < ζ <

√
ρ maps to the real z-axis between x = −∞ and

the vortex centred on the negative real axis.

3. Function theory

The basis of our method is to make use of properties of the special function
defined by

P (ζ, ρ) = (1− ζ)
∞∏
k=1

(1− ρ2kζ)(1− ρ2kζ−1), (5)

together with its derivatives. This function is, to within a normalization, the
Schottky–Klein prime function [14] of the annulus ρ < |ζ| < 1. Clearly P (ζ, ρ)
has a simple zero at ζ = 1. It is easy to show, directly from the infinite product
definition, that

P (ρ2ζ, ρ) = −ζ−1P (ζ, ρ), P (ζ−1, ρ) = −ζ−1P (ζ, ρ). (6)

We also introduce

K(ζ, ρ) =
ζP ′(ζ, ρ)
P (ζ, ρ)

(7)

where P ′(ζ, ρ) denotes the derivative with respect to ζ. This function can be
represented by the infinite sum

K(ζ, ρ) = − ζ

1− ζ
−
∞∑
k=1

ρ2kζ

1− ρ2kζ
+
∞∑
k=1

ρ2kζ−1

1− ρ2kζ−1
. (8)

It is easy to show, from (6), that

K(ρ2ζ, ρ) = K(ζ, ρ)− 1, K(ζ−1, ρ) = 1−K(ζ, ρ). (9)
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It is also worth noting that, near ζ = 1,

K(ζ, ρ) ∼ 1
ζ − 1

+ locally analytic function, (10)

so it has a simple pole there.
We will also need the function

L(ζ, ρ) = ζK ′(ζ, ρ), (11)

which can be shown, from (9), to satisfy the functional relations

L(ρ2ζ, ρ) = L(ζ, ρ), L(1/ζ, ρ) = L(ζ, ρ). (12)

It is easy to show that L(ζ, ρ) can be represented by

L(ζ, ρ) = −
∞∑
k=0

ρ2kζ

(1− ρ2kζ)2
−
∞∑
k=1

ρ2kζ−1

(1− ρ2kζ−1)2
. (13)

From (10), L(ζ, ρ) has a second-order pole at ζ = 1.

4. The function W (ζ)

The conditions on W (ζ) = w(z(ζ)) are that it has a simple pole, of appro-
priate residue, at ζ = β =

√
ρ and constant imaginary part on |ζ| = ρ, 1 so that

the boundaries of both vortices are streamlines. It is also necessary to arrange
for the vortices to have the correct circulations. The mathematical problem is
equivalent to finding the complex potential for uniform flow past two solid ob-
stacles with equal and opposite circulations around them. Such a result follows
immediately from the work of Crowdy [15, 16, 14] and is given by

W (ζ) =
Ua
√
ρ

[e−iχK(ζ/
√
ρ, ρ)− eiχK(ζ

√
ρ, ρ)]− iΓ

2π
log ζ. (14)

Putting aside the derivation, it is easy to verify directly that W (ζ) as given in
(14) has all the required properties. From (4) and (10), it follows that W (ζ) ∼
Ue−iχz as ζ → √ρ. By using the properties in (9) it can be verified that W (ζ)
has constant imaginary part on |ζ| = 1, ρ. Since |ζ| = ρ maps to the left-hand
vortex with positive circulation Γ then (14) gives the required circulation since
it changes by Γ on traversing the circle |ζ| = ρ in an anticlockwise direction and
that corresponds, under the mapping, to encircling the left-most hollow vortex
in an anticlockwise direction. Formula (14) also changes by Γ on traversing
the circle |ζ| = 1 in an anticlockwise fashion but that corresponds, under the
mapping, to going clockwise around the vortex on the right.
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5. The function dw/dz

Now consider the complex velocity function

R(ζ) =
dw
dz

= u− iv. (15)

It must be analytic and single-valued in the flow region and must tend to
Ue−iχ = iU as z → ∞. Based on an analysis of the problem of a co-travelling
point vortex pair – which has two stagnation points, one ahead of and another
behind the vortex pair – we similarly expect this function to have two zeros in
the annulus ρ < |ζ| < 1. By Bernoulli’s theorem, and the fact that the hol-
low vortices contain regions at constant pressure, R(ζ) must also have constant
modulus on the circles |ζ| = ρ and 1.

Consider the candidate function

R(ζ) =
A

ζ

{
P (ζα−1, ρ)P (ζα−1, ρ)
P (ζα, ρ)P (ζα, ρ)

}
, (16)

where α is some point in the annulus ρ < |ζ| < 1 and A is a constant. It will be
shown that this function has all the desired properties. First, it is analytic and
single-valued in ρ < |ζ| < 1 and tends to a constant as ζ → √ρ. It also has two
simple zeros in the annulus ρ < |ζ| < 1 at points α and α (and no others in this
annulus). Furthermore, on use of the functional relations in (6), it follows that

|R| = q0 =
|A|
|α|2

on |ζ| = 1, |R| = q1 =
|A|
ρ

on |ζ| = ρ. (17)

Hence, R(ζ) has constant modulus on the two boundary circles |ζ| = ρ, 1 and,
from the symmetry of the problem, we expect the constant fluid speed on each
vortex to be the same which implies

|α| = √ρ (18)

We therefore write
α =
√
ρ exp (iΘ) (19)

for some real parameter Θ. As ζ → √ρ,

R(ζ)→ R(
√
ρ) =

A
√
ρ

(
P (eiΘ, ρ)P (e−iΘ, ρ)
P (ρeiΘ, ρ)P (ρe−iΘ, ρ)

)
= iU, (20)

implying that

A = iU
√
ρ

(
P (ρeiΘ, ρ)P (ρe−iΘ, ρ)
P (eiΘ, ρ)P (e−iΘ, ρ)

)
= iU

√
ρ

∣∣∣∣P (ρeiΘ, ρ)
P (eiΘ, ρ)

∣∣∣∣2 . (21)
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Figure 2: Schematic of the preimage ζ domain. The two circles |ζ| = ρ, 1 map to the boundaries
of the hollow vortices. The cross at

√
ρ is the preimage of the point at infinity, the asterisk at

−√ρ marks the preimage of z = 0 and α and its conjugate (the stagnation point preimages)
are depicted by dots.

By the chain rule,
dw
dz

=
dW/dζ
dz/dζ

, (22)

and so, since dz/dζ cannot vanish inside the annulus owing to the requirement
that the conformal mapping be one-to-one, α and α are also zeros of the function
dW/dζ. On taking a derivative of (14) with respect to ζ and multiplying by ζ,
we find

ζ
dW
dζ

=
iUa
√
ρ

(L(ζ/
√
ρ, ρ) + L(ζ

√
ρ, ρ))− iΓ

2π
. (23)

Therefore, if the solution exists, Θ must be a real solution of

L(exp(iΘ), ρ) + L(ρ exp(iΘ), ρ) = µ, (24)

where

µ ≡
Γ
√
ρ

2πUa
. (25)

It can be shown by using (12) that if Θ is a real solution of (24) then so is −Θ,
which is consistent with choosing the zeros of (16) to be at α and α. Figure 2
shows the ζ domain.

6. Derivation of the conformal map

From the properties of L(ζ, ρ) and the discussion above, the function ζdW/dζ
has second-order poles at β and 1/β and simple zeros at α, α, α−1 and α−1. It
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follows that

ζ
dW
dζ

= B

{
P (ζ/α, ρ)P (ζα, ρ)P (ζ/α, ρ)P (ζα, ρ)

P 2(ζ/
√
ρ, ρ)P 2(ζ

√
ρ, ρ)

}
, (26)

where B is a constant, is an alternative representation of ζdW/dζ. The validity
of this representation can be directly verified using the functional relations (6).
A rearrangement of (22) implies that

dz
dζ

=
ζdW/dζ
ζdw/dz

. (27)

On substitution of (26) and (16) into (27) we deduce that

dz
dζ

= C

{
P (ζ
√
ρeiΘ, ρ)P (ζ

√
ρe−iΘ, ρ)

P (ζ/
√
ρ, ρ)P (ζ

√
ρ, ρ)

}2

, (28)

where C is some real constant. On integration, the required conformal mapping
is found to be

z(ζ) = C

∫ ζ

−√ρ

{
P (ζ ′
√
ρeiΘ, ρ)P (ζ ′

√
ρe−iΘ, ρ)

P (ζ ′/
√
ρ, ρ)P (ζ ′

√
ρ, ρ)

}2

dζ ′. (29)

This mapping depends on three real parameters: ρ, Θ and C.
To fix a time scale for the vortex motion we set Γ = 1. We expect to be able

to specify the size of the hollow vortices in the steadily translating configuration.
A natural choice for controlling the vortex size is to specify ρ. For fixed Γ, we
now calculate a one-parameter family of hollow vortex pairs parametrized by ρ.

For a given ρ, the angle Θ must be chosen so that the conformal mapping
(29) is a single-valued function in the annulus ρ < |ζ| < 1. This is necessary in
order that the images of the circles |ζ| = ρ, 1 are closed curves. Hence we must
solve ∮

|ζ|=1

{
P (ζ ′
√
ρeiΘ, ρ)P (ζ ′

√
ρe−iΘ, ρ)

P (ζ ′/
√
ρ, ρ)P (ζ ′

√
ρ, ρ)

}2

dζ ′ = 0 (30)

to find Θ. Equation (30) is the only nonlinear equation to be solved because,
once Θ is determined from (30), µ is given explicitly by (24), while the normal-
ization constant C can be chosen such that the vortex centroids are at ±1. A
local expansion of (28) about the point ζ =

√
ρ gives

a = −ρCP
2(ρeiΘ, ρ)P 2(ρe−iΘ, ρ)
P̂ 2(1)P 2(ρ, ρ)

, (31)

where

P̂ (ζ, ρ) =
P (ζ, ρ)
1− ζ

=
∞∏
k=1

(1− ρ2kζ)(1− ρ2kζ−1). (32)
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Figure 3: Graph of Θ as a function of ρ obtained by solving (30).

From (25), the propagation speed U is

U =
Γ
√
ρ

2πµa
. (33)

The vortex area is found to be a monotonic increasing function of ρ, vindicating
our choice of ρ as the parameter governing the solution family. Figure 3 shows
Θ as a function of ρ. For ρ = 0, we find Θ = π/3.

Figure 4 shows a range of hollow vortex equilibria for small ρ increasing up
to 0.4. As ρ→ 0 the vortices have small area and are nearly circular in shape.
As ρ increases, their area increases monotonically and the vortices progresively
assume a kidney shape. As ρ approaches unity the area of the vortices appears
to increase without bound and there is no limiting state with finite area. Figure
5 shows the equilibria for ρ = 0.5, 0.6, 0.7 and 0.8: as the vortex area increases
the vortex shapes each develop a well-defined flat edge separated by a thin layer
of irrotational fluid. The thickness of this intermediate layer appears to reach
a limiting value as ρ→ 1.

Figure 6 shows that, as a function of vortex area, the speed of translation
U/U0 is monotonic decreasing. For vanishing vortex area U tends, as expected,
to the value U0 given in (1) and relevant for two point vortices with circulations
±1 separated by distance b = 2. It is worth pointing out that an existence proof
due to [17] and based on a variational approach shows that desingularizing a
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Figure 4: Hollow vortex pairs of increasing area with vortex centroids fixed at (±1, 0). Differ-
ent shapes correspond to different ρ with the corresponding values of vortex area and U listed
in Table 1.

point vortex as a vortex patch with the same circulation, and the same centroid
also generally decreases the propagation speed of the pair. The result here
confirms that the same is true if the point vortex pair is desingularized using
hollow vortices.

7. Linear stability formulation

Baker, Saffman & Sheffield [6] found the equilibrium configuration for a
singly periodic hollow vortex row and studied its linear stability. They intro-
duced a novel formulation of the linear stability problem involving a change of
independent variables from (x, y) to (φ, ψ) where φ and ψ are the velocity poten-
tial and streamfunction of the steady state problem. The perturbed potential
function is given as

φT = φ+ Φ(φ, ψ, t), (34)
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ρ vortex area speed of translation U
0.001 0.012541 0.079577
0.005 0.062220 0.079566
0.025 0.300407 0.079307
0.05 0.579789 0.078598
0.1 1.103109 0.076337
0.15 1.608328 0.074717
0.2 2.118202 0.070361
0.25 2.648760 0.067176
0.3 3.213440 0.063990
0.4 4.499376 0.057681

Table 1: Table of vortex area and speed U for various values of ρ.

−4 −2 0 2 4
−6

−4

−2

0

2

4

6

Figure 5: Hollow vortex pairs for ρ = 0.5, 0.6, 0.7 and 0.8 with corresponding areas 6.485844,
8.808747, 12.471308 and 18.567377 and vortex centroids fixed at (±1, 0). As ρ → 1 the area
of the vortices grows without bound.
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Figure 6: Graph of U/U0 against vortex area. The vortex pair travels more slowly as the area
of each vortex increases.

with the perturbed vortex boundary given by

ψ = ψ0 + δ(φ, t), (35)

where δ and Φ are the linear perturbations. The equations for these perturbed
quantities are found to be

1
q2
0

∂δ

∂t
+
∂δ

∂φ

∣∣∣∣
ψ=ψ0

=
∂Φ
∂ψ

∣∣∣∣
ψ=ψ0

,
1
q2
0

∂Φ
∂t

+
∂

∂ψ

(
1
2
q2

q2
0

)
ψ=ψ0

δ +
∂Φ
∂φ

= 0. (36)

Llewellyn Smith & Crowdy [8] have recently used this formulation in their stud-
ies of the stability of other classes of hollow vortex equilibria. Here q is the
magnitude of the fluid velocity and q0 its value on the boundary.

To study the linear stability of the hollow vortex pair, we adopt a similar for-
mulation. However, for our purposes, a second change of variable is convenient.
Returning to the complex variable ζ = reiθ, suppose the streamline ψ = ψ0

corresponds to the circle r = r0. On this boundary, φ is a function of θ and
the normal derivative of ψ is a function of r, so we consider the perturbation
equations written with θ and r as independent variables. An application of the
chain rule to (36) gives

1
q2
0

∂δ

∂t
+

1
φθ

∂δ

∂θ
=

1
ψr

∂Φ
∂r

,
1
q2
0

∂Φ
∂t

+
1
φθ

∂Φ
∂θ

+
(

1
ψr

∂

∂r

1
2
q2

q2
0

)
r=r0

δ = 0, (37)

where φθ ≡ ∂φ/∂θ and ψr ≡ ∂ψ/∂r.
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From the Cauchy–Riemann equations ψr = −r−1φθ, so on writing all quan-
tities in the form δ(t) = δ̂eλt, for example, where δ̂ is a constant, the boundary
conditions (37) transform to

σδ +Q
∂δ

∂θ
= −Qr∂Φ

∂r
, σΦ +Q

∂Φ
∂θ

= Gδ, (38)

where all hats have been dropped, σ = λΓ/2πq0 is the non-dimensional growth
rate, and

Q =
1
φθ

∣∣∣∣
r=r0

, G = Q

[
r
∂

∂r

1
2
q2

q2
0

]
r=r0

. (39)

It is important to note that equations (38) hold on any hollow vortex boundary
corresponding to the image of circle |ζ| = r0.

It is helpful to rewrite the functions Q and G in terms of the analytic func-
tions W (ζ) and R(ζ) introduced earlier in deriving the equilibrium states. After
some straightforward manipulations it can be shown that

Q =
1
φθ

∣∣∣∣
r=r0

=
1

Re [iζW ′(ζ)]

∣∣∣∣
r=r0

. (40)

If we write

S(ζ) ≡ R(ζ)
q0

,
q2

q2
0

= S(ζ)S(ζ), (41)

then

r
∂

∂r

(
1
2
q2

q2
0

)
=

1
2

(
ζ
∂

∂ζ
+ ζ

∂

∂ζ

)
S(ζ)S(ζ)

=
1
2

(ζS′(ζ)S(ζ) + ζS′(ζ)S(ζ)) = Re
[
ζS′(ζ)
S(ζ)

]
,

(42)

where we have used the fact that |S|2 = 1 on r = r0. Hence

G = QRe
[
ζS′(ζ)
S(ζ)

]
r=r0

. (43)

For the hollow vortex pair, the boundary conditions (38) hold on both r = 1
and r = ρ. It follows that

σδ +Q1
∂δ

∂θ
= −Q1r

∂Φ
∂r

, σΦ +Q1
∂Φ
∂θ

= G1δ,

σδ̃ +Q2
∂δ̃

∂θ
= −Q2r

∂Φ
∂r

, σΦ +Q2
∂Φ
∂θ

= G2δ̃,

(44)
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where

Q1 =
1

Re [iζW ′(ζ)]

∣∣∣∣
r=1

, G1 = Q1Re
[
ζS′(ζ)
S(ζ)

]
r=1

,

Q2 =
1

Re [iζW ′(ζ)]

∣∣∣∣
r=ρ

, G2 = Q2Re
[
ζS′(ζ)
S(ζ)

]
r=ρ

,

(45)

From (11) and (14), we have

iζW ′(ζ) =
Γ
2π
− Ua
√
ρ

[L(ζ/
√
ρ, ρ) + L(ζ

√
ρ, ρ)]. (46)

It is also known from (17) that

q0 = q1 =
|A|
ρ
, (47)

so

S(ζ) =
R(ζ)
q0

=
Aρ

|A|ζ

[
P (ζeiΘ/

√
ρ, ρ)P (ζe−iΘ/

√
ρ, ρ)

P (ζeiΘ√ρ, ρ)P (ζe−iΘ√ρ, ρ)

]
=

iρ
ζ

[
P (ζeiΘ/

√
ρ, ρ)P (ζe−iΘ/

√
ρ, ρ)

P (ζeiΘ√ρ, ρ)P (ζe−iΘ√ρ, ρ)

]
,

(48)

where we have used the fact that A is purely imaginary. It follows that

ζS′(ζ)
S(ζ)

= −1+K(ζeiΘ/
√
ρ, ρ)+K(ζe−iΘ/

√
ρ, ρ)−K(ζeiΘ√ρ, ρ)−K(ζe−iΘ√ρ, ρ).

(49)

7.1. Numerical eigenvalue problem
The perturbation potential Φ is harmonic in the annulus ρ < |ζ| < 1 so it

can be written as

Φ =
∞∑

k=−∞

Φkeikθr|k| +
∞∑

k=−∞,k 6=0

Φ̃keikθ
(ρ
r

)|k|
(50)

with the perturbations to the hollow vortex boundaries described by

δ =
∞∑

k=−∞

δkeikθ, δ̃ =
∞∑

k=−∞

δ̃keikθ. (51)

There are no logarithmic terms in Φ, as these would correspond to changes of
circulation or sources/sinks in the system. On substitution of these expressions
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into the boundary conditions (44), we arrive at the matrix equations

−
∞∑

m=−∞
Q

(1)
k−m|m|[Φm − ρ

|m|Φ̃m]− i
∞∑

m=−∞
Q

(1)
k−mmδm = σδk,

−i
∞∑

m=−∞
Q

(1)
k−mm[Φm + ρ|m|Φ̃m] +

∞∑
m=−∞

G
(1)
k−mδm = σ[Φk + ρ|k|Φ̃k],

−
∞∑

m=−∞
Q

(2)
k−m|m|[Φmρ

|m| − Φ̃m]− i
∞∑

m=−∞
Q

(2)
k−mmδ̃m = σδ̃k,

−i
∞∑

m=−∞
Q

(2)
k−mm[Φmρ|m| + Φ̃m] +

∞∑
m=−∞

G
(2)
k−mδ̃m = σ[Φkρ|k| + Φ̃k].

(52)

The truncated form of these equations yield a generalized eigenvalue problem

Ar = σBr, (53)

where

A =



−Q(1)|N | Q(1)|N |R −iQ(1)N 0

−iQ(1)N −iQ(1)NR G(1) 0

−Q(2)|N |R Q(2)|N | 0 −iQ(2)N

−iQ(2)NR −iQ(2)N 0 G(2)


,

B =


0 0 I 0
I R 0 0
0 0 0 I
R I 0 0

 ,

(54)

and

r = [Φ−N , · · · ,ΦN , Φ̃−N , · · · , Φ̃N , δ−N , · · · , δN , δ̃−N , · · · , δ̃N ]T . (55)

The matrices in (54) have the elements

Nkm = kδkm, Rkm = ρ|k|δkm, (56)

Q(1)
km = Q̂

(1)
k−m, Q(2)

km = Q̂
(2)
k−m, G(1)

km = Ĝ
(1)
k−m, G(2)

km = Ĝ
(2)
k−m. (57)

where the function Q1 has been expanded as a Fourier series according to

Q1(ξ) =
∞∑

j=−∞
Q̂

(1)
j eijξ; Q̂

(1)
j =

1
2π

∫ π

−π
Q1(ξ)e−ijξ dξ, (58)
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with Q2, G1 and G2 treated similarly. These quantities are readily computable
using the Fast Fourier Transform.

The constant term Φ0 can be set arbitrarily implying that there are 4N
unknown coefficients {Φm, Φ̃m} and 2(2N + 1) = 4N + 2 unknown coefficients
{δm, δ̃m}. This makes a total of 8N+2 unknowns. On equating coefficients there
are ostensibly 4(2N + 1) equations, but the constant terms in the two pressure
conditions can be ignored because one simply gives the linear perturbation to
the Bernoulli constant while we can always set δ0 to zero. This leaves 8N + 2
equations for the same number of unknowns.

A check on the numerical formulation is to verify that, as ρ → 0, the lin-
ear stability spectrum tends to a union of two copies of the eigenfrequencies
associated with an isolated circular hollow vortex. These nondimensional eigen-
frequencies are found by solving for the perturbations of a circular hollow vortex:

σ±m = i(m± |m|1/2), m 6= 0. (59)

For sufficiently small ρ, the configuration is linearly stable. However, it is found
that there is a loss of linear stability at the critical value ρ = 0.022627 when a
duo of eigenvalues with imaginary part close to ±2 develop non-zero real parts
and therefore become unstable, leading to a quartet of eigenvalues. The area of
each vortex at this critical value of ρ is 0.272931.

8. Discussion

A concise new representation of the counter-rotating hollow vortex pair orig-
inally derived by Pocklington has been presented and a full linear stability anal-
ysis of the equilibria has been carried out. The vortex pair is found to be linearly
stable to infinitesimal perturbations provided the vortices are sufficiently small.
The instability has the form typical of Hamiltonian systems in which eigenvalues
on the imaginary axis split into two unstable modes with equal and opposite
real parts.

As already mentioned, the linear stability properties of the uniform vortex
patch solutions computed by Deem & Zabusky [3] and Pierrehumbert [4] have
not yet been properly analysed in the literature, but are generally viewed as
being linearly stable [1]. Although the vortex models are clearly very different,
our results on the hollow vortex pair suggest the possibility that the vortex
patch pair might similarly be linearly stable only when the area of the vortices
is sufficiently small. This matter deserves fuller investigation.

Finally, by means of an analysis similar to that presented here, Crowdy &
Green [9] have identified analytical solutions for steady von Kármán streets of
hollow vortices. In the case where the two infinite rows of vortices making
up the street are aligned vertically – the so-called “symmetric street” – the
solutions amount to a singly-periodic array of hollow vortex pairs of precisely
the kind studied here. The linear stability analysis of these new hollow vortex
street solutions remains to be performed, but it should be amenable to study
via an analysis similar to that performed here, combined with the ideas from
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Floquet theory recently used by Llewellyn Smith & Crowdy [8] to study the
linear stability of the single vortex row found by Baker, Saffman & Sheffield [6].
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