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Abstract. Vortices exist in wedge-shaped corners in Stokes flow. In seeking an

analogous eigensolution structure in three dimensions, an analytic construction is

derived for a rectangular corner. This restriction mirrors the only corner type for which

computed streamlines are available for comparison and explanation. The dominant

eigenvalue is complex, giving rise to localized eddies. Hence trapped fluid is predicted

near the corner.

1. Introduction

Dean and Montagnon (1949) showed that complex eigenvalues exist for steady viscous

self-similar flow in a corner of angle less than 146◦. Moffatt (1964) inferred the existence

of a sequence of vortices that now bear his name, in two-dimensional Stokes flow.

Wakiya (1976)), followed by Liu and Joseph (1978), showed that the corresponding

axisymmetric vortices can exist within a cone and Malhotra et al. (2005) added the two

cone geometry. By means of asymptotic methods, the presence of such vortices was

identified in cylinder/plane (Davis and O’Neill 1977), two-sphere (Davis et al. 1976)

and wall-driven rectangular cavity (Meleshko 1996) flows. However, fully asymmetric

three-dimensional flows are unlikely to exhibit vortices because the boundaries lack the

confining effect needed to trap the creeping flow.

The quest for eddies in a genuinely three-dimensional flow has been pursued by

considering suitably chosen examples. Hills and Moffatt (2000) analyzed the asymptotic

behavior of the flow near the edge formed by two fixed rectangular fins placed in a

rotating cone and identified a sequence of eddies whose streamlines lie on concentric

spheres, centered at the cone’s vertex. Gomilko et al. (2003) displayed eddies generated

by boundary-driven flows in a trihedral rectangular corner. Further sets of computed

eddy streamlines in such corners are given by Shankar and Deshpande (2000) and

Shankar (2007), whose lid-driven cavity flows also feature the self-similar flow in a right-

angled corner that is analyzed below. Leriche and Labrosse (2011) find eigenmodes for

Stokes flow in a cubical cavity and discuss the flow in corners. Guglielmini et al. (2011)

have shown helical-like structures, that is, the streamlines are not closed, in three-

dimensional pressure-driven confined channel flow around corners. Their results, which
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depend on the channel’s aspect ratio, have been confirmed experimentally by Sznitman

et al. (2012). Mustakis and Kim (1998) calculate solutions outside a cube and examine

the solution near a vertex, but do not investigate the presence of eddies.

The three-dimensional flows mentioned above are, with one exception, driven by

the motion of boundaries. The aim here is to understand the flow in a corner bounded

by planes at rest, driven by some motion in the far field, as at the base of the lid-

driven cavity, to see if eddies develop. The first step towards extending the wedge

results of Dean and Montagnon (1949) and Moffatt (1964) to a tetrahedral corner was

recently presented by Scott (2013), who showed numerically that the flow field in the

slowest decaying mode has symmetric and antisymmetric components. This, possibly

unexpected, result is yet another example of the rich variety of three-dimensional flows.

The approach adopted below is essentially analytical, with numerical work appearing

at a late stage.

2. Self similar flow in a right-angled corner

Consider the corner, r > 0, 0 < θ < π/2, 0 < φ < π/2, in terms of spherical polar

coordinates (r, θ, φ). In Stokes flow, the dimensionless velocity and pressure fields are

governed by

∇ · v = 0, ∇2v = ∇p. (1)

With v = ur̂ + vθ̂ + wφ̂, the continuity equation suggests a similarity solution of the

form

u = rλU, (v, w) = rλ(V,W ) sin θ, p = rλ−1P. (2)

2.1. Solutions with azimuthal trigonometric dependence

Set σ = cos θ and seek solutions

(U, V, P ) = [f(σ), g(σ), k(σ)] sin νφ, W = h(σ) cos νφ. (3)

Then ∇2p = 0 implies that

k = AP ν
λ−1(σ), (4)

for some constant A.

A suitable velocity representation in spherical polar coordinates, which proves

superior to Lamb’s general solution, is

v = ∇×∇× (rΨ) +∇× (rχ), p = (1 + r · ∇)∇2Ψ, (5)

where ∇4Ψ = 0 = ∇2χ (Davis 1983). Then

∇× [rrλP ν
λ (σ) cos νφ] = rλ

[
− ν√

1− σ2
P ν
λ (σ) sin νφ θ̂ +

√
1− σ2

dP ν
λ

dσ
cos νφ φ̂

]
, (6)

which yields a solution of type (3) with

hIII =
dP ν

λ

dσ
, gIII = − νP ν

λ

1− σ2
, f III = 0 = kIII . (7)
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Since

∇×∇× (rΨ) = ∇[Ψ + r · ∇Ψ]− r∇2Ψ (8)

and

∇×∇× [rrλ+1P ν
λ+1(σ) sin νφ] = rλ(λ+ 2)

[
(λ+ 1)P ν

λ+1 sin νφ r̂

−
√

1− σ2
dP ν

λ+1

dσ
sin νφ θ̂ +

ν√
1− σ2

P ν
λ+1 cos νφ φ̂

]
, (9)

a solution of type (3) is given by

f II = (λ+ 1)P ν
λ+1, gII = −

dP ν
λ+1

dσ
, hII =

νP ν
λ+1

1− σ2
, kII = 0. (10)

Similarly, ∇×∇× [rrλ+1P ν
λ−1(σ) sin νφ] yields a third solution with

f I =
λ(λ− 1)

λ+ 2
P ν
λ−1, gI = −

dP ν
λ−1

dσ
, hI =

νP ν
λ−1

1− σ2
, kI =

2λ(2λ+ 1)

λ+ 2
P ν
λ−1. (11)

The only non-vanishing k is in agreement with (4). Except for the rescaling of solution I,

these independent solutions are those derived from Lamb’s general solution by Gomilko

et al. (2003). For 0 ≤ σ ≤ 1, a useful formula, given by Gradshteyn and Ryzhik (2000,

8.704), is

P ν
λ (σ) = P ν

−λ−1(σ) =
1

Γ(1− ν)

(
1 + σ

1− σ

)ν/2
F

(
−λ, λ+ 1; 1− ν;

1− σ
2

)
. (12)

Both the power of r and the functions in solution I imply that Re λ ≥ 1/2 may be

assumed henceforth, since complex conjugate eigenvalues are anticipated. A particular

value of (12), given by Gradshteyn and Ryzhik (2000, 8.756.1), is

P−2mλ (0) =
2−2m

√
π

Γ(m+ 1 + λ
2
)Γ(m− λ−1

2
)
, (13)

which vanishes if and only if λ is an odd integer ≥ 2m + 1 and is consistent with

Gradshteyn and Ryzhik (2000, 8.736.1)

P−2mλ (σ) =
Γ(λ− 2m+ 1)

Γ(λ+ 2m+ 1)
P 2m
λ (σ). (14)

2.2. Imposition of no-slip

If ν = −2m in (3), then (U, V ) = (0, 0) at φ = 0, π/2, that is, the tangential components

vanish at these two walls. For (U,W ) = (0, 0) at θ = π/2, (7, 10, 11) are suitably

combined to obtain, for mode m ≥ 1,

Um =

[
P−2mλ−1 (σ)

P−2mλ−1 (0)
−
P−2mλ+1 (σ)

P−2mλ+1 (0)

]
sin 2mφ, (15)

Wm =

[
2m(λ+ 2)P−2mλ−1 (σ)

λ(λ− 1)(1− σ2)P−2mλ−1 (0)
−

2mP−2mλ+1 (σ)

(λ+ 1)(1− σ2)P−2mλ+1 (0)

−Cm
dP−2mλ /dσ(σ)

dP−2mλ /dσ(0)

]
cos 2mφ, (16)
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where

Cm =
2m(λ+ 2)

λ(λ− 1)
− 2m

λ+ 1
. (17)

Use of the recurrence relations

(2λ+ 1)σP ν
λ = (λ+ ν)P ν

λ−1 + (λ+ 1− ν)P ν
λ+1, (18)

(1− σ2)
d

dσ
P ν
λ =

1

2λ+ 1

[
(λ+ 1)(λ+ ν)P ν

λ−1 − λ(λ+ 1− ν)P ν
λ+1

]
, (19)

yields the much simpler form

Wm =
2m

λ− 1

[
P−2mλ−1 (σ)

P−2mλ−1 (0)
−
P−2mλ+1 (σ)

P−2mλ+1 (0)

]
cos 2mφ

1− σ2
. (20)

Evidently there is no role for the m = 0 mode. The corresponding θ̂-component of (3)

is given by

Vm =

[
−

(λ+ 2)dP−2mλ−1 /dσ(σ)

λ(λ− 1)P−2mλ−1 (0)
+

dP−2mλ+1 /dσ(σ)

(λ+ 1)P−2mλ+1 (0)

+Cm
2mP−2mλ (σ)

(1− σ2)dP−2mλ /dσ(0)

]
sin 2mφ, (21)

which can be similarly reduced to

Vm =

[(
2λ+ 1

λ− 1

)
P−2mλ (σ)− (λ+ 2)(λ− 2m)

λ− 1
σP−2mλ−1 (σ)

+(λ+ 2m+ 1)σP−2mλ+1 (σ)
] sin 2mφ

(1− σ2)dP−2mλ /dσ(0)
. (22)

In particular,

(Vm)σ=0 =

(
2λ+ 1

λ− 1

)
P−2mλ (0)

dP−2mλ /dσ(0)
sin 2mφ (23)

which is required below.

We set

v = rλ
3∑
i=1

∞∑
m=1

F (i)
m

[
Um(σ(i), φ(i))r̂ + [Vm(σ(i), φ(i))θ̂

(i)
+Wm(σ(i), φ(i))φ̂

(i)
] sin θ(i)

]
, (24)

where (r, θ(i), φ(i)) (i = 1, 2, 3) are the three sets of spherical polar coordinates defined

by Gomilko et al. (2003), with the θ(1) = 0, θ(2) = 0, θ(3) = 0 axes coincident with

the positive z, x, y-axes respectively (see Figure 1). At the three walls, all tangential

velocities are zero. On z = 0 (θ(1) = π/2, σ(1) = 0), only the θ̂(1)-component at

θ(1) = π/2 (σ(1) = 0) is required, while

θ(2) = φ(1), φ(2) = 0, θ(3) = π/2− φ(1), φ(3) = π/2, θ̂
(1)

= −φ̂(2)
, θ̂

(1)
= φ̂

(3)
. (25)

Thus, from (24),

(v)σ(1)=0 = rλθ̂
(1)

∞∑
m=1

[
F (1)
m Vm(0, φ(1))− F (2)

m Wm(cosφ(1), 0) sinφ(1)

+F (3)
m Wm(sinφ(1), π/2) cosφ(1)

]
, (26)
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whose required vanishing gives, on substitution of (20, 23),
∞∑
m=1

{
F (1)
m

(
2λ+ 1

λ− 1

)
P−2mλ (0)

dP−2mλ /dσ(0)
sin 2mφ

−F (2)
m

2m

λ− 1

[
P−2mλ−1 (cosφ)

P−2mλ−1 (0)
−
P−2mλ+1 (cosφ)

P−2mλ+1 (0)

]
1

sinφ

+F (3)
m

2m

λ− 1

[
P−2mλ−1 (sinφ)

P−2mλ−1 (0)
−
P−2mλ+1 (sinφ)

P−2mλ+1 (0)

]
(−1)m

cosφ

}
= 0. (27)

Noting that ∫ π/2

0

f(sinφ) sin 2nφ dφ = (−1)n+1

∫ π/2

0

f(cosφ) sin 2nφ dφ, (28)

the Fourier components of (27) yield, for n ≥ 1,
∞∑
m=1

{
F (1)
m (2λ+ 1)δmn

P−2mλ (0)

dP−2mλ /dσ(0)
− 8m

π
[F (2)
m + (−1)m+nF (3)

m ]×

∫ π/2

0

[
P−2mλ−1 (cosφ)

P−2mλ−1 (0)
−
P−2mλ+1 (cosφ)

P−2mλ+1 (0)

]
sin 2nφ

sinφ
dφ

}
= 0. (29)

Corresponding equations on the other bounding planes x = 0 and y = 0 are obtained by

cyclic permutation of the index i. Thus the general system has three sets of equations of

type (29). However, disjoint subsets are available. Solutions with rotational symmetry,

that is, invariant under the permutations x→ y → z → x exist with F
(1)
m = F

(2)
m = F

(3)
m .

Inspection of (15, 20) shows that even and odd values of m yield modes that are

respectively antisymmetric and symmetric with respect to the midplane φ = π/4.

Evidently the single system then splits into disjoint systems for the even and odd

coefficients Fm. As observed by Scott (2013), there exist modes that are superpositions

of antisymmetric and symmetric velocity fields. Reference to (24) shows that these

solutions have the forms

v = rλ
∞∑
q=1

F2q

[
U2q(σ

(1), φ(1))r̂ + [V2q(σ
(1), φ(1))θ̂

(1)
+W2q(σ

(1), φ(1))φ̂
(1)

] sin θ(1)
]

+rλ
3∑
i=2

∞∑
q=1

F2q−1
[
U2q−1(σ

(i), φ(i))r̂

+[V2q−1(σ
(i), φ(i))θ̂

(i)
+W2q−1(σ

(i), φ(i))φ̂
(i)

] sin θ(i)
]
, (30)

and similarly with odd and even coefficients and velocities interchanged. Thus, in either

case, two systems of type (29) are obtained.

2.3. Phantom real eigenvalues

The above analysis assumes that P−2mλ±1 (0) 6= 0 and dP−2mλ /dσ(0) 6= 0 for m > 0. On

noting that

P 2m
2k−1(σ) = 0 (m ≥ k), P 2m

2k−1(0) = 0 (m < k), (31)
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= 0

(1)

φ
(2)

O

φ
(3)

(1)

x,

y,

z,

θ

θ

θ

(2)

(3)
= 0

= 0

φ

Figure 1. Geometry of the problem and coordinate systems.

P 2m
2k+1(σ) = 0 (m > k), P 2m

2k+1(0) = 0 (m ≤ k), (32)

dP 2m
2k

dσ
(σ) = 0 (m > k),

dP 2m
2k−1

dσ
(0) = 0 (m ≤ k), (33)

and that contributions to the normal velocity in (24) in the rotationally symmetric

modes are of type rλ×

Vm(0, φ)−Wm(cosφ, 0) sinφ+Wm(sinφ, π/2) cosφ

= −g(0) sin 2mφ− h(cosφ) sinφ+ (−1)mh(sinφ) cosφ, (34)

it is found that, in general, λ = 2k (with k ≥ 1) yields (3k − 1) linear combinations

of the k functions sin 2mφ with 1 ≤ m ≤ k, and thus is an eigenvalue of multiplicity

(2k − 1). Evaluation of the associated velocity fields requires that a component of (24)

be expressed in Cartesian form, giving

vx(x, y, z)x̂+ vy(x, y, z)ŷ + vz(x, y, z)ẑ, (35)

whence, for example, the ẑ-component of (24) is vx(z, x, y) + vy(y, z, x) + vz(x, y, z).

This is found to be zero, algebraically for the λ = 2 field and three λ = 4 fields, and

numerically for the five λ = 6 fields. The complexity increases significantly with λ and

a similar result for arbitrary λ is here stated empirically.

3. Numerical Determination of Eigenvalues

A numerical solution of the infinite linear system (29) is obtained by truncating at finite

m = M . The resulting finite homogeneous system has a solution if the determinant

of the matrix multiplying the vector (F
(1)
1 , F

(2)
1 , F

(3)
1 , . . . , F

(1)
M , F

(2)
M , F

(3)
M )T has zero

determinant.

The four lowest eigenvalues (ordered by their real part) are 3.264 ± 1.1616i,

5.2942 ± 1.645i, 5.3538 ± 1.2874i and 5.380608242, accurate to the digits given. These
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results were obtained using M = 256, while the integrals were computed using the

trapezoidal rule with 255 interior points. The values of the eigenvalues are the same as

those found by Scott (2013). The first two eigenvalues are double, corresponding to a

symmetric and an antisymmetric mode about the midplane φ = π/4. The third contains

only odd modes and is hence symmetric about φ = π/4, while the fourth contains only

even modes and is antisymmetric about φ = π/4. The third and fourth modes have

the permutation symmetry mentioned above. These symmetry properties are again the

same as found by Scott (2013).

4. Conclusion

In order to use analysis, the flow has been restricted to a trihedral rectangular corner,

that is, the first octant bounded by the coordinate planes. With an assumed symmetric

role of x, y, z, a crucial advantage is achieved by using the three sets of spherical

coordinates defined by Gomilko et al. (2003). Solutions are constructed to have zero

tangential velocity at all three walls and then superposed to eliminate normal flow at any

wall. Complex eigenvalues are numerically determined and demonstrate the existence of

trapped eddies in a trihedral rectangular corner. In particular, the computed streamlines

displayed by Shankar (2007, §12.3) would, with more details of the flow in the bottom

corners of the lid-driven cavity flows of various aspect ratios, exhibit trapped fluid.
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