## Final Exam

This is a three-hour examination. You may use two hand-written sheets of paper with notes that you have prepared. The six questions each carry the same number of points.

1 Saving the Terminator from a pool of molten metal (10 points). You are interested in rescuing the Terminator from drowning in a pool of molten metal when only his arm is sticking above the pool. A sketch of this scenario is given below.


We model the temperature distribution in Terminator's arm using the one-dimensional heat equation. Assume the length of the arm above the molten metal has length $L$. The heat equation is

$$
\frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} u}{\partial x^{2}} .
$$

Let's use a constant temperature boundary condition for the extremity of the arm touching the molten metal, so that

$$
u(0, t)=u_{\text {metal }},
$$

where $u_{\text {metal }}$ is the temperature of the pool of molten metal. We model the other side of his arm with the Newton cooling boundary condition, so that

$$
-\kappa \frac{\partial u}{\partial x}(L, t)=H\left(u-u_{\mathrm{air}}\right) \quad \text { at } \quad x=L
$$

Answer the following:

1. What are the units of $\kappa$ and $H$ ? Assume $u$ is in $K, t$ is in seconds, and $x$ is in meters. Explain physically why $H>0$.
2. Assume that $\partial u / \partial t=0$ (the Terminator's temperature is not changing in time). What is the temperature distribution $u(x)$ in the Terminator's arm?
3. As the Terminator sinks into the pool, $L$ decreases. Does the decrease in $L$ increase or decrease the temperature at his fingertips $u(x=L)$ ?

2 Laplace in an annulus (10 points). Consider Laplace's equation in an annulus. The annulus has an inner radius of 1 and and outer radius of 2 ; a sketch of the annulus domain is given below. Laplace's equation in polar coordinates is

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

The boundary conditions are

$$
u(1, \theta)=0 \quad \text { and } \quad u(2, \theta)=\ln 2
$$



Answer the following:
(a) Use separation of variables to find the general solution $u(r, \theta)$.
(b) Find the solution which satisfies the boundary conditions at $r=1$ and $r=2$.
(c) If $u$ is temperature, the total heat flux flowing toward the origin at radius $r$ is

$$
Q(r)=\int_{0}^{2 \pi} q(r, \theta) r \mathrm{~d} \theta
$$

where

$$
q(r, \theta)=k \frac{\partial u}{\partial r}
$$

is the inward heat flux density (the flux in the negative $r$-direction). Determine $Q(r=$ 2 ) and $Q(r=1)$. What do you observe? How could you have predicted this from the governing problem without computing the integrals?

## 3 Fourier series (10 points).

(a) Find the Fourier sine series of

$$
f(x)=\mathrm{e}^{x},
$$

on the interval $0 \leq x \leq L$.
(b) Find the Fourier cosine series of $f(x)$ on the same interval.

Hint: consider the real and imaginary parts of the integral $\int_{0}^{L} \mathrm{e}^{x+\mathrm{i} n \pi x / L} \mathrm{~d} x$.

4 Green's functions (10 points). Consider steady-state heat conduction in a rod with an arbitrary source $Q(x)$, non-uniform cross-section, and length $L$. At $x=0$ the rod is insulated, so there is zero heat flux out of the rod at $x=0$. At $x=L$ the rod is held at constant temperature.
(a) Explain why the governing equation is

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(A \frac{\mathrm{~d} u}{\mathrm{~d} x}\right)+Q=0
$$

(b) The rod is insulated at $x=0$ such that the heat flux is zero there. What is the corresponding mathematical boundary condition on $u$ at $x=0$ ?
(c) Explain why we are mathematically justified in taking $u=0$ at the end $x=L$, rather than requiring the actual value of the temperature there.
(d) Find the Green's function for the above inhomogeneous equation with $A=(2 L-$ $x)^{-1}$.
(e) Express the solution a sum of two integrals. [Hint: be very clear about which variable is the variable of integration as well as its range in each integral.]

5 Fourier transform: wave equation with damping (10 points). Consider the equation

$$
\frac{\partial^{2} u}{\partial t^{2}}+2 \gamma \frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

with initial conditions

$$
u(x, 0)=f(x) \quad \text { and } \quad \frac{\partial u}{\partial t}(x, 0)=0 .
$$

(a) What are the units of $\gamma$ ? What sign do you expect $\gamma$ to have for well-behaved solutions? [Hint: You can ignore the right-hand side to answer this.]
(b) Obtain the equation for the Fourier transform $U(\omega, t)$ of $u(x, t)$. [ Hint: you will find that both solutions for $U$ have the form $U \sim \mathrm{e}^{\alpha t}$. To save yourself some ink, write $\alpha$ as $\alpha=-\gamma \pm \mathrm{i} \sigma$, and give the form of $\sigma$ in terms of $c, \gamma$, and $\omega$.]
(c) Let $f(x)=\delta(x)$ and find the physical space solution $u(x, t)$. You may leave your answer as an integral.
(d) Define the physical space solution found in (c) as $G(x, t)$. Write the general solution for $u(x, t)$ as a convolution integral involving $G(x, t)$ and an arbitrary initial condition $f(x)$.

6 Using D'Alembert's solution (10 points). Consider the wave equation in an infinite domain:

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad \text { where } \quad-\infty<x<\infty
$$

and the initial conditions on $u(x, t)$ are

$$
u(x, 0)=0 \quad \text { and } \quad \frac{\partial u}{\partial t}(x, 0)=g(x)
$$

1. Write down the general solution $u(x, t)$ for arbitrary $g(x)$.
2. Compute and draw the solution at two later times when

$$
g(x)=x \mathrm{e}^{-x^{2} / 2}
$$

[ Hint: because the function $x \mathrm{e}^{-x^{2} / 2}$ is an exact derivative, it can be integrated in closed form.]

