http://web.eng.ucsd.edu/~sgls/MAE105\_2015/

## **Solutions I**

## 1 Trigonometry.

(a) If we take a = b = x, the identities for  $\cos(a + b)$  and  $\cos(a - b)$  become

$$\cos(2x) = \cos^2(x) - \sin^2(x), \tag{1}$$

$$1 = \cos^2(x) + \sin^2(x). \tag{2}$$

We can use the identities in (1) and (2) to prove the two identities in part (a). Subtracting equation (1) from (2) yields

$$1 - \cos(2x) = \cos^2(x) + \sin^2(x) - \left(\cos^2(x) - \sin^2(x)\right) = 2\sin^2(x). \tag{3}$$

Division by 2 then yields identity (a) for  $\sin^2(x)$ ,

$$\sin^2(x) = \frac{1}{2} \left[ 1 - \cos(2x) \right].$$

The second identity for  $\cos^2(x)$  can be obtained in a similar manner, except that we add (1) and (2). This yields

$$\cos(2x) + 1 = 2\cos^2(x), \tag{4}$$

and division by 2 yields identity (b) for  $\cos^2(x)$ .

(b) If we expand the squared quantity, we find

$$e^{2ix} = \left[\cos(x) + i\sin(x)\right]^2 = \cos^2(x) + 2i\cos(x)\sin(x) - \sin^2(x).$$
 (5)

But we also have that

$$e^{2ix} = \cos(2x) + i\sin(2x). \tag{6}$$

The real and imaginary parts of (5) and (6) must be equal. Therefore

$$\cos^2(x) - \sin^2(x) = \cos(2x)$$
 and  $2\cos(x)\sin(x) = \sin(2x)$ . (7)

We can use the first identity, along with the identity  $\cos^2(x) + \sin^2(x) = 1$ , to prove identities (a) and (b) as previously.

(c) For i., use identity (a) to write

$$I_1 = \int_0^{2\pi} \sin^2(x) \, \mathrm{d}x = \int_0^{2\pi} \left( \frac{1}{2} - \frac{1}{2} \cos(2x) \right) \, \mathrm{d}x = \frac{1}{2} x \Big|_0^{2\pi} - \frac{1}{4} \sin(2x) \Big|_0^{2\pi} = \pi. \quad (8)$$

Therefore  $I_1 = \pi$ .

For ii., we require the identity

$$\cos(a)\cos(b) = \frac{1}{2} \left[ \cos\left( [a-b]x \right) + \cos\left( [a+b]x \right) \right],$$

which implies that

$$\cos(x)\cos(3x) = \frac{1}{2}\Big(\cos(2x) + \cos(4x)\Big).$$

We can use this to write  $I_2$  as

$$I_{2} = \int_{0}^{2\pi} \cos(x) \cos(3x) dx = \int_{0}^{2\pi} \frac{1}{2} \cos(2x) + \frac{1}{2} \cos(4x) dx$$
$$= \frac{1}{4} \sin(2x) \Big|_{0}^{2\pi} + \frac{1}{8} \sin(4x) \Big|_{0}^{2\pi} = 0.$$
(9)

Therefore  $I_2 = 0$ .

**2** a) Try the form  $y(x) = e^{kx}$ . Plugging this in yields

$$e^{kx}\left(k^2+25\right)=0\,$$

The "associated" or "characteristic" equation corresponds to setting the parenthetical quantity to zero (the other option  $e^{kx} = 0$  corresponds to choosing the "trivial" solution y = 0). The associated equation is then

$$k^2 + 25 = 0.$$

The two solutions to this equation are  $k_1 = 5i$  and  $k_2 = -5i$ , where  $i = \sqrt{-1}$  is the imaginary unit. The two possible solutions for y(x) are then  $y_1(x) = Ae^{5ix}$  and  $y_2 = Be^{-5ix}$ , where A and B are arbitrary constants. Because the governing equation is linear, the general solution is a linear combination of these two solutions, so

$$y(x) = Ae^{5ix} + Be^{-5ix}$$

Using Euler's identity  $e^{i\theta} = \cos\theta + i\sin\theta$  we can write this in the alternative (and possibly more convenient if the boundary conditions are given as real quantities) form

$$y(x) = C\cos(x) + D\sin(x),$$

where *C* and *D* are given by C = A + B and D = i(A - B).

b) The associated equation is

$$k^2 - 25 = 0$$

and the two solutions for k are k = 5 and k = -5. The general solution for y(x) is therefore

$$y(x) = Ae^{5x} + Be^{-5x}.$$

c) The associated equation is

$$0 = k^2 + 2k + 1 = (k+1)^2. (10)$$

This equation has a "repeated root" at k = -1. (Because the equation is a second-order polynomial, it has two solutions, which are both k = -1.) When the associated equation has one repeated root k, the differential equation has one solution given by  $y_1 = Ae^{kx}$ , and another given by  $y_2 = Bxe^{kx}$ . This can be verified by substituting  $y_1(x)$  and  $y_2(x)$  into the original differential equation and observing that both do satisfy the differential equation. The general solution is therefore

$$y(x) = Ae^{-x} + Bxe^{-x}.$$

d) The associated equation is

$$0 = k^2 + 2k + 6.$$

The two solutions to this equation can be found using the quadratic formula:

$$k_1 = -1 + \sqrt{5}i$$
 and  $k_2 = -1 - \sqrt{5}i$ .

The general solution for y(x) is therefore

$$y(x) = Ae^{(-1+\sqrt{5}x} + Be^{(-1-\sqrt{5})x}$$

Using Euler's identity we can write this in the potentially more convenient and intuitive form

$$y(x) = e^{-x} \left[ C\cos(\sqrt{5}x) + D\sin(\sqrt{5}x) \right].$$

## 3 Ordinary differential equations II.

a) The ordinary differential equation has the associated equation

$$k-4=0$$
,

which gives k = 4 and the general solution  $y(x) = Ae^{4x}$ . We apply the condition y(0) = 1 and obtain A = 1. The solution is hence

$$y(x) = e^{4x}.$$

It can be verified that this satisfies the differential equation and the condition y(0) = 1.

b) We separate variables by writing the differential equation as

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 4y\,,$$

so dividing by *y* and multiplying by d*x* yields

$$\frac{\mathrm{d}y}{y} = 4\,\mathrm{d}x.$$

We can then integrate both sides. We have the indefinite integrals

$$\int \frac{\mathrm{d}y}{y} = \ln y + A$$
, and  $\int 4 \, \mathrm{d}x = 4x + B$ .

We thus find that

$$ln y = 4x + C,$$

where *A* is the single undetermined constant in the problem. We then take the exponential of this equation. Since  $e^{\ln y} = y$ , we find

$$y = e^{4x+C} = De^{4x},$$

where we have introduced a new undetermined constant  $D = e^{C}$  for convenience. As in part a), applying the condition y(0) = 1 yields D = 1 and the solution

$$y(x) = e^{4x}.$$

4 In steady state, the temperature of the wire is governed by

$$k\frac{\mathrm{d}^2T}{\mathrm{d}x^2} + S = 0.$$

Since *k* and *S* are constants, we can integrate once to obtain

$$\frac{\mathrm{d}T}{\mathrm{d}x} = \left(\frac{S}{k}\right)x + A\,,$$

where A is a constant. We can either integrate again, or apply the boundary condition (which is a simpler option here). Applying the condition  $\partial T/\partial x = f$  at x = 1 implies that

$$f = \frac{S}{k} + A,$$

and so A = f - S/k. We have then

$$\frac{\mathrm{d}T}{\mathrm{d}x} = \frac{S}{k}(x-1) + f.$$

Integrating again, we find

$$T(x) = \frac{S}{k} \left( \frac{1}{2}x^2 - x \right) + fx + B.$$

The condition T(x = 0) = 0 determines B, and we find B = 0. The final solution is therefore

$$T(x) = \frac{S}{2k}x^2 + (f - S/k)x$$
.

5 Before we solve this problem, we note an error in the problem statement. The variablearea heat condition equation is actually

$$A\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left( kA \frac{\partial T}{\partial x} \right) .$$

This error does not affect the solutions. Another note concerns about dimensions. The form given for A(x) is dimensional; in particular the dimensions of A(x) are determined by  $A_0$ , which, naturally, has dimensions of area. This implies that the denominator  $1 + x^2/5$  is dimensionless. Thus, because x has dimensions of meters, we must have that " $x^2$ " has dimensions meters<sup>2</sup>, and that " $x^2$ " is properly interpreted as also having dimensions of meters<sup>2</sup>. This unfortunate confusion would have been avoided if the problem statement had been written

$$A(x) = \frac{A_0}{1 + x^2/A_1},$$

where  $A_0 = 1 \,\mathrm{m}^2$  and  $A_1 = 5 \,\mathrm{m}^2$ . In any case, on to the answers...

1. In steady-state, we have  $\partial T/\partial t = 0$ , and the variable-area heat conduction equation becomes

$$k\frac{\mathrm{d}}{\mathrm{d}x}\left(A\frac{\mathrm{d}T}{\mathrm{d}x}\right)=0\,,$$

where we have moved *k* outside of the derivative because it is constant. We first divide both sides by *k* to eliminate it. We can then integrate once to find

$$A\frac{\mathrm{d}T}{\mathrm{d}x}=C\,,$$

where *C* is a constant. Our equation for dT/dx is therefore

$$\frac{\mathrm{d}T}{\mathrm{d}x} = CA(x) = C\left(1 + \frac{1}{5}x^2\right) .$$

Integrating again to find T, we find

$$T = C\left(x + \frac{1}{15}x^3\right) + D,$$

where D is another constant. The condition  $T(0) = 18 \,^{\circ}C$  implies that  $D = 18 \,^{\circ}C$ . The condition  $T(1) = 22 \,^{\circ}C$  implies that

$$22\,^{\circ}C = C\frac{16}{15}\,\mathrm{m} + 18\,^{\circ}C$$
,

and therefore

$$C = 4 \,{}^{\circ}C \times \frac{15}{16} \frac{1}{m} = \frac{15}{4} \,{}^{\circ}C/m$$
.

We thus have for T(x),

$$T(x) = \frac{15}{4} \left( x + \frac{1}{15} x^3 \right) + 18,$$

where x is in meters and T is in  ${}^{\circ}C$ .

2. In the heat conduction equation, we are not concerned with the absolute value of the temperature, but rather its rate of change: its x-gradient,  $\partial T/\partial x$  (and  $\partial^2 T/\partial x^2$ ), and its time-rate of change  $\partial T/\partial t$ . Since Kelvin and Celsius differ only by a constant, the heat-conduction equation is identical whether T is expressed in Kelvin of Celsius. Another way to see this is to substitute

$$T(x,t) = T_K(x,t) + 273.15$$
,

into the heat equation and derive an equation for  $T_K(x,t)$ , or temperature in Kelvin. Compare this to the equation for T(x,t): they are the same.