Solutions I

1 Trigonometry.

(a) If we take $a=b=x$, the identities for $\cos (a+b)$ and $\cos (a-b)$ become

$$
\begin{align*}
\cos (2 x) & =\cos ^{2}(x)-\sin ^{2}(x), \tag{1}\\
1 & =\cos ^{2}(x)+\sin ^{2}(x) . \tag{2}
\end{align*}
$$

We can use the identities in (1) and (2) to prove the two identities in part (a). Subtracting equation (1) from (2) yields

$$
\begin{equation*}
1-\cos (2 x)=\cos ^{2}(x)+\sin ^{2}(x)-\left(\cos ^{2}(x)-\sin ^{2}(x)\right)=2 \sin ^{2}(x) . \tag{3}
\end{equation*}
$$

Division by 2 then yields identity (a) for $\sin ^{2}(x)$,

$$
\sin ^{2}(x)=\frac{1}{2}[1-\cos (2 x)] .
$$

The second identity for $\cos ^{2}(x)$ can be obtained in a similar manner, except that we add (1) and (2). This yields

$$
\begin{equation*}
\cos (2 x)+1=2 \cos ^{2}(x), \tag{4}
\end{equation*}
$$

and division by 2 yields identity (b) for $\cos ^{2}(x)$.
(b) If we expand the squared quantity, we find

$$
\begin{equation*}
\mathrm{e}^{2 \mathrm{i} x}=[\cos (x)+\mathrm{i} \sin (x)]^{2}=\cos ^{2}(x)+2 \mathrm{i} \cos (x) \sin (x)-\sin ^{2}(x) . \tag{5}
\end{equation*}
$$

But we also have that

$$
\begin{equation*}
\mathrm{e}^{2 \mathrm{i} x}=\cos (2 x)+\mathrm{i} \sin (2 x) . \tag{6}
\end{equation*}
$$

The real and imaginary parts of (5) and (6) must be equal. Therefore

$$
\begin{equation*}
\cos ^{2}(x)-\sin ^{2}(x)=\cos (2 x) \quad \text { and } \quad 2 \cos (x) \sin (x)=\sin (2 x) . \tag{7}
\end{equation*}
$$

We can use the first identity, along with the identity $\cos ^{2}(x)+\sin ^{2}(x)=1$, to prove identities (a) and (b) as previously.
(c) For i., use identity (a) to write

$$
\begin{equation*}
I_{1}=\int_{0}^{2 \pi} \sin ^{2}(x) \mathrm{d} x=\int_{0}^{2 \pi}\left(\frac{1}{2}-\frac{1}{2} \cos (2 x)\right) \mathrm{d} x=\left.\frac{1}{2} x\right|_{0} ^{2 \pi}-\left.\frac{1}{4} \sin (2 x)\right|_{0} ^{2 \pi}=\pi \tag{8}
\end{equation*}
$$

Therefore $I_{1}=\pi$.

For ii., we require the identity

$$
\cos (a) \cos (b)=\frac{1}{2}[\cos ([a-b] x)+\cos ([a+b] x)]
$$

which implies that

$$
\cos (x) \cos (3 x)=\frac{1}{2}(\cos (2 x)+\cos (4 x))
$$

We can use this to write I_{2} as

$$
\begin{align*}
I_{2} & =\int_{0}^{2 \pi} \cos (x) \cos (3 x) \mathrm{d} x=\int_{0}^{2 \pi} \frac{1}{2} \cos (2 x)+\frac{1}{2} \cos (4 x) \mathrm{d} x \\
& =\left.\frac{1}{4} \sin (2 x)\right|_{0} ^{2 \pi}+\left.\frac{1}{8} \sin (4 x)\right|_{0} ^{2 \pi}=0 . \tag{9}
\end{align*}
$$

Therefore $I_{2}=0$.

2 a) Try the form $y(x)=\mathrm{e}^{k x}$. Plugging this in yields

$$
\mathrm{e}^{k x}\left(k^{2}+25\right)=0
$$

The " associated" or "characteristic" equation corresponds to setting the parenthetical quantity to zero (the other option $\mathrm{e}^{k x}=0$ corresponds to choosing the "trivial" solution $y=0$). The associated equation is then

$$
k^{2}+25=0
$$

The two solutions to this equation are $k_{1}=5 \mathrm{i}$ and $k_{2}=-5 \mathrm{i}$, where $\mathrm{i}=\sqrt{-1}$ is the imaginary unit. The two possible solutions for $y(x)$ are then $y_{1}(x)=A \mathrm{e}^{5 \mathrm{i} x}$ and $y_{2}=$ $B \mathrm{e}^{-5 i x}$, where A and B are arbitrary constants. Because the governing equation is linear, the general solution is a linear combination of these two solutions, so

$$
y(x)=A \mathrm{e}^{5 \mathrm{i} x}+B \mathrm{e}^{-5 \mathrm{i} x}
$$

Using Euler's identity $\mathrm{e}^{\mathrm{i} \theta}=\cos \theta+\mathrm{i} \sin \theta$ we can write this in the alternative (and possibly more convenient if the boundary conditions are given as real quantities) form

$$
y(x)=C \cos (x)+D \sin (x)
$$

where C and D are given by $C=A+B$ and $D=\mathrm{i}(A-B)$.
b) The associated equation is

$$
k^{2}-25=0
$$

and the two solutions for k are $k=5$ and $k=-5$. The general solution for $y(x)$ is therefore

$$
y(x)=A \mathrm{e}^{5 x}+B \mathrm{e}^{-5 x}
$$

c) The associated equation is

$$
\begin{equation*}
0=k^{2}+2 k+1=(k+1)^{2} \tag{10}
\end{equation*}
$$

This equation has a "repeated root" at $k=-1$. (Because the equation is a second-order polynomial, it has two solutions, which are both $k=-1$.) When the associated equation has one repeated root k, the differential equation has one solution given by $y_{1}=A \mathrm{e}^{k x}$, and another given by $y_{2}=B x \mathrm{e}^{k x}$. This can be verified by substituting $y_{1}(x)$ and $y_{2}(x)$ into the original differential equation and observing that both do satisfy the differential equation. The general solution is therefore

$$
y(x)=A \mathrm{e}^{-x}+B x \mathrm{e}^{-x} .
$$

d) The associated equation is

$$
0=k^{2}+2 k+6
$$

The two solutions to this equation can be found using the quadratic formula:

$$
k_{1}=-1+\sqrt{5} \mathrm{i} \quad \text { and } \quad k_{2}=-1-\sqrt{5} \mathrm{i}
$$

The general solution for $y(x)$ is therefore

$$
y(x)=A \mathrm{e}^{(-1+\sqrt{5} x}+B \mathrm{e}^{(-1-\sqrt{5}) x}
$$

Using Euler's identity we can write this in the potentially more convenient and intuitive form

$$
y(x)=\mathrm{e}^{-x}[C \cos (\sqrt{5} x)+D \sin (\sqrt{5} x)] .
$$

3 Ordinary differential equations II.

a) The ordinary differential equation has the associated equation

$$
k-4=0
$$

which gives $k=4$ and the general solution $y(x)=A \mathrm{e}^{4 x}$. We apply the condition $y(0)=1$ and obtain $A=1$. The solution is hence

$$
y(x)=\mathrm{e}^{4 x}
$$

It can be verified that this satisfies the differential equation and the condition $y(0)=1$.
b) We separate variables by writing the differential equation as

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=4 y
$$

so dividing by y and multiplying by $\mathrm{d} x$ yields

$$
\frac{\mathrm{d} y}{y}=4 \mathrm{~d} x
$$

We can then integrate both sides. We have the indefinite integrals

$$
\int \frac{\mathrm{d} y}{y}=\ln y+A, \quad \text { and } \quad \int 4 \mathrm{~d} x=4 x+B
$$

We thus find that

$$
\ln y=4 x+C
$$

where A is the single undetermined constant in the problem. We then take the exponential of this equation. Since $\mathrm{e}^{\ln y}=y$, we find

$$
y=\mathrm{e}^{4 x+C}=D \mathrm{e}^{4 x}
$$

where we have introduced a new undetermined constant $D=e^{C}$ for convenience. As in part a), applying the condition $y(0)=1$ yields $D=1$ and the solution

$$
y(x)=\mathrm{e}^{4 x}
$$

4 In steady state, the temperature of the wire is governed by

$$
k \frac{\mathrm{~d}^{2} T}{\mathrm{~d} x^{2}}+S=0
$$

Since k and S are constants, we can integrate once to obtain

$$
\frac{\mathrm{d} T}{\mathrm{~d} x}=\left(\frac{S}{k}\right) x+A
$$

where A is a constant. We can either integrate again, or apply the boundary condition (which is a simpler option here). Applying the condition $\partial T / \partial x=f$ at $x=1$ implies that

$$
f=\frac{S}{k}+A
$$

and so $A=f-S / k$. We have then

$$
\frac{\mathrm{d} T}{\mathrm{~d} x}=\frac{S}{k}(x-1)+f .
$$

Integrating again, we find

$$
T(x)=\frac{S}{k}\left(\frac{1}{2} x^{2}-x\right)+f x+B
$$

The condition $T(x=0)=0$ determines B, and we find $B=0$. The final solution is therefore

$$
T(x)=\frac{S}{2 k} x^{2}+(f-S / k) x .
$$

5 Before we solve this problem, we note an error in the problem statement. The variablearea heat condition equation is actually

$$
A \frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left(k A \frac{\partial T}{\partial x}\right)
$$

This error does not affect the solutions. Another note concerns about dimensions. The form given for $A(x)$ is dimensional; in particular the dimensions of $A(x)$ are determined by A_{0}, which, naturally, has dimensions of area. This implies that the denominator $1+$ $x^{2} / 5$ is dimensionless. Thus, because x has dimensions of meters, we must have that " x^{2} " has dimensions meters ${ }^{2}$, and that " 5 " is properly interpreted as also having dimensions of meters ${ }^{2}$. This unfortunate confusion would have been avoided if the problem statement had been written

$$
A(x)=\frac{A_{0}}{1+x^{2} / A_{1}}
$$

where $A_{0}=1 \mathrm{~m}^{2}$ and $A_{1}=5 \mathrm{~m}^{2}$. In any case, on to the answers...

1. In steady-state, we have $\partial T / \partial t=0$, and the variable-area heat conduction equation becomes

$$
k \frac{\mathrm{~d}}{\mathrm{~d} x}\left(A \frac{\mathrm{~d} T}{\mathrm{~d} x}\right)=0
$$

where we have moved k outside of the derivative because it is constant. We first divide both sides by k to eliminate it. We can then integrate once to find

$$
A \frac{\mathrm{~d} T}{\mathrm{~d} x}=C
$$

where C is a constant. Our equation for $\mathrm{d} T / \mathrm{d} x$ is therefore

$$
\frac{\mathrm{d} T}{\mathrm{~d} x}=C A(x)=C\left(1+\frac{1}{5} x^{2}\right)
$$

Integrating again to find T, we find

$$
T=C\left(x+\frac{1}{15} x^{3}\right)+D
$$

where D is another constant. The condition $T(0)=18^{\circ} \mathrm{C}$ implies that $D=18^{\circ} \mathrm{C}$. The condition $T(1)=22^{\circ} \mathrm{C}$ implies that

$$
22^{\circ} \mathrm{C}=\mathrm{C} \frac{16}{15} \mathrm{~m}+18^{\circ} \mathrm{C}
$$

and therefore

$$
\mathrm{C}=4^{\circ} \mathrm{C} \times \frac{15}{16} \frac{1}{\mathrm{~m}}=\frac{15}{4}{ }^{\circ} \mathrm{C} / \mathrm{m}
$$

We thus have for $T(x)$,

$$
T(x)=\frac{15}{4}\left(x+\frac{1}{15} x^{3}\right)+18
$$

where x is in meters and T is in ${ }^{\circ} \mathrm{C}$.
2. In the heat conduction equation, we are not concerned with the absolute value of the temperature, but rather its rate of change: its x-gradient, $\partial T / \partial x$ (and $\partial^{2} T / \partial x^{2}$), and its time-rate of change $\partial T / \partial t$. Since Kelvin and Celsius differ only by a constant, the heat-conduction equation is identical whether T is expressed in Kelvin of Celsius. Another way to see this is to substitute

$$
T(x, t)=T_{K}(x, t)+273.15
$$

into the heat equation and derive an equation for $T_{K}(x, t)$, or temperature in Kelvin. Compare this to the equation for $T(x, t)$: they are the same.

