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Solutions I

1 Trigonometry.

(a)

(b)

If we take 2 = b = x, the identities for cos(a + b) and cos(a — b) become

cos(2x) = cos?(x) — sin?(x), (1)

1 = cos?(x) + sin?(x). (2)

We can use the identities in (1) and (2) to prove the two identities in part (a). Subtract-
ing equation (1) from (2) yields

1 — cos(2x) = cos?(x) + sin?(x) — (cosz(x) — sinz(x)> = 2sin®(x) . 3)
Division by 2 then yields identity (a) for sin?(x),
sin?(x) = %[1 - cos(2x)] .

The second identity for cos?(x) can be obtained in a similar manner, except that we
add (1) and (2). This yields

cos(2x) + 1 = 2cos?(x), 4)
and division by 2 yields identity (b) for cos?(x).

If we expand the squared quantity, we find
, 2
e? — | cos(x) + isin(x)} = cos?(x) + 2i cos(x) sin(x) — sin?(x) . (5)

But we also have that .
es¥ = cos(2x) +isin(2x). (6)

The real and imaginary parts of (5) and (6) must be equal. Therefore
cos?(x) —sin®(x) = cos(2x) and 2cos(x)sin(x) = sin(2x). (7)

We can use the first identity, along with the identity cos?(x) + sin?(x) = 1, to prove
identities (a) and (b) as previously.



(c) Fori., use identity (a) to write

27 2r 2r 27
_ .2 _ 1_1 _1 1 _
L = /0 sin“(x) dx = /0 <§ - zcos(2x)) dx = 7x ‘0 — 7 sin(2x) ‘0 =7m. (8
Therefore I; = .
For ii., we require the identity
cos(a) cos(b) = 3 [cos <[a — b]x) + cos ([a + b]x) ,
which implies that
cos(x) cos(3x) = %(COS(ZX) + cos(4x)) :
We can use this to write I, as
2r 2r
L = / cos(x) cos(3x)dx = / 1 cos(2x) + 1 cos(4x) dx
0 0
1 2r 1 2r
= 7 sin(2x) ‘0 + g sin(4x) )0 =0. )

Therefore I, = 0.
2 a) Try the form y(x) = e*. Plugging this in yields
et (K2 +25) =0,

The “ associated” or “characteristic” equation corresponds to setting the parenthetical
quantity to zero (the other option e* = 0 corresponds to choosing the “trivial” solution
y = 0). The associated equation is then

k> +25=0.

The two solutions to this equation are k; = 5i and k; = —5i, where i = Vv/—1 is the
imaginary unit. The two possible solutions for y(x) are then y;(x) = Ae’*¥ and y, =
Be ™%, where A and B are arbitrary constants. Because the governing equation is linear,
the general solution is a linear combination of these two solutions, so

y(x) — AeSix_‘_BefSix.

Using Euler’s identity e'® = cos 6 + i sin § we can write this in the alternative (and possibly
more convenient if the boundary conditions are given as real quantities) form

y(x) = Ccos(x) + Dsin(x),



where C and D are givenby C = A+ Band D =i(A — B).

b) The associated equation is
K —25=0,

and the two solutions for k are k = 5 and k = —5. The general solution for y(x) is therefore

y(x) = Ae> + Be ™",

c) The associated equation is

0=k +2k+1=(k+1)>. (10)
This equation has a “repeated root” at k = —1. (Because the equation is a second-order
polynomial, it has two solutions, which are both k = —1.) When the associated equation

has one repeated root k, the differential equation has one solution given by y; = Ae,
and another given by y, = Bxe**. This can be verified by substituting y; (x) and y»(x)
into the original differential equation and observing that both do satisfy the differential
equation. The general solution is therefore

y(x) = Ae " + Bxe *.

d) The associated equation is
0=k +2k+6.

The two solutions to this equation can be found using the quadratic formula:
ki = —1+V5i and ky = —1— /5i.
The general solution for y(x) is therefore
y(x) = Ae("1HV5Y 4 Ba(-1-VE)x

Using Euler’s identity we can write this in the potentially more convenient and intuitive
form

y(x) =e" [C cos(v/5x) + Dsin(\/gx)} .

3 Ordinary differential equations II.
a) The ordinary differential equation has the associated equation

k—4=0,

which gives k = 4 and the general solution y(x) = Ae**. We apply the condition y(0) = 1
and obtain A = 1. The solution is hence

y(x) =e



It can be verified that this satisfies the differential equation and the condition y(0) = 1.

b) We separate variables by writing the differential equation as

so dividing by y and multiplying by dx yields
dy =4dx.
Yy

We can then integrate both sides. We have the indefinite integrals
dy
/? =Ilny+A, and /4dx:4x+B.
We thus find that

Iny =4x+C,

where A is the single undetermined constant in the problem. We then take the exponential
of this equation. Since eV = v, we find

y= e4x+C — De4x’
where we have introduced a new undetermined constant D = e€ for convenience. As in
part a), applying the condition y(0) = 1 yields D = 1 and the solution

y(x) =e*.

4 In steady state, the temperature of the wire is governed by

d2T

iz

+5=0.

Since k and S are constants, we can integrate once to obtain

dT S

— (=2 A

dx (k) A
where A is a constant. We can either integrate again, or apply the boundary condition
(which is a simpler option here). Applying the condition 07T /dx = f at x = 1 implies that

S
f—%—i—A,
and so A = f — S/k. We have then
dT S
Fra A AR

4



Integrating again, we find

T(x):%<%x2—x)+fx—|-B.

The condition T(x = 0) = 0 determines B, and we find B = 0. The final solution is
therefore

T(x) = %xz—{— (f —S/k)x.

5 Before we solve this problem, we note an error in the problem statement. The variable-
area heat condition equation is actually

oT o oT

This error does not affect the solutions. Another note concerns about dimensions. The
form given for A(x) is dimensional; in particular the dimensions of A(x) are determined
by Ap, which, naturally, has dimensions of area. This implies that the denominator 1 +
x2 /5 is dimensionless. Thus, because x has dimensions of meters, we must have that “x2”
has dimensions meters?, and that “5” is properly interpreted as also having dimensions of
meters®. This unfortunate confusion would have been avoided if the problem statement

had been written
Ag

- 1+x2/A;"

where Ag = 1m? and A; = 5m?. In any case, on to the answers. ..

A(x)

1. In steady-state, we have dT /9t = 0, and the variable-area heat conduction equation
becomes q 4T
k—(A—) =0,
dx ( dx ) 0

where we have moved k outside of the derivative because it is constant. We first
divide both sides by k to eliminate it. We can then integrate once to find

dT
Aa =C,
where C is a constant. Our equation for dT/dx is therefore
dT _ 1.2
a_CA(x)_c(1+5x) .

Integrating again to find T, we find
T=C(x+4%x°)+D,

where D is another constant. The condition T(0) = 18 °C implies that D = 18°C.
The condition T(1) = 22 °C implies that

o 16 0
22 C—Cﬁm—{—lS C,



and therefore
151 E

We thus have for T(x),
T(x) =1L <x+ %x3> +18,
where x is in meters and T is in °C.

. In the heat conduction equation, we are not concerned with the absolute value of the
temperature, but rather its rate of change: its x-gradient, 0T /dx (and 0%T/9x?), and
its time-rate of change 0T /9t. Since Kelvin and Celsius differ only by a constant, the
heat-conduction equation is identical whether T is expressed in Kelvin of Celsius.
Another way to see this is to substitute

T(x,t) = Tx(x,t) +273.15,

into the heat equation and derive an equation for Tx(x, t), or temperature in Kelvin.
Compare this to the equation for T(x, t): they are the same.



