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Solutions I

1 Trigonometry.

(a) If we take a = b = x, the identities for cos(a + b) and cos(a− b) become

cos(2x) = cos2(x)− sin2(x) , (1)

1 = cos2(x) + sin2(x) . (2)

We can use the identities in (1) and (2) to prove the two identities in part (a). Subtract-
ing equation (1) from (2) yields

1− cos(2x) = cos2(x) + sin2(x)−
(

cos2(x)− sin2(x)
)
= 2 sin2(x) . (3)

Division by 2 then yields identity (a) for sin2(x),

sin2(x) = 1
2

[
1− cos(2x)

]
.

The second identity for cos2(x) can be obtained in a similar manner, except that we
add (1) and (2). This yields

cos(2x) + 1 = 2 cos2(x) , (4)

and division by 2 yields identity (b) for cos2(x).

(b) If we expand the squared quantity, we find

e2ix =
[

cos(x) + i sin(x)
]2

= cos2(x) + 2i cos(x) sin(x)− sin2(x) . (5)

But we also have that
e2ix = cos(2x) + i sin(2x) . (6)

The real and imaginary parts of (5) and (6) must be equal. Therefore

cos2(x)− sin2(x) = cos(2x) and 2 cos(x) sin(x) = sin(2x) . (7)

We can use the first identity, along with the identity cos2(x) + sin2(x) = 1, to prove
identities (a) and (b) as previously.
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(c) For i., use identity (a) to write

I1 =
∫ 2π

0
sin2(x)dx =

∫ 2π

0

(
1
2 −

1
2 cos(2x)

)
dx = 1

2 x
∣∣∣2π

0
− 1

4 sin(2x)
∣∣∣2π

0
= π . (8)

Therefore I1 = π.

For ii., we require the identity

cos(a) cos(b) = 1
2

[
cos

(
[a− b]x

)
+ cos

(
[a + b]x

)]
,

which implies that

cos(x) cos(3x) = 1
2

(
cos(2x) + cos(4x)

)
.

We can use this to write I2 as

I2 =
∫ 2π

0
cos(x) cos(3x)dx =

∫ 2π

0

1
2 cos(2x) + 1

2 cos(4x)dx

= 1
4 sin(2x)

∣∣∣2π

0
+ 1

8 sin(4x)
∣∣∣2π

0
= 0 . (9)

Therefore I2 = 0.

2 a) Try the form y(x) = ekx. Plugging this in yields

ekx
(

k2 + 25
)
= 0 ,

The “ associated” or “characteristic” equation corresponds to setting the parenthetical
quantity to zero (the other option ekx = 0 corresponds to choosing the “trivial” solution
y = 0). The associated equation is then

k2 + 25 = 0 .

The two solutions to this equation are k1 = 5i and k2 = −5i, where i =
√
−1 is the

imaginary unit. The two possible solutions for y(x) are then y1(x) = Ae5ix and y2 =
Be−5ix, where A and B are arbitrary constants. Because the governing equation is linear,
the general solution is a linear combination of these two solutions, so

y(x) = Ae5ix + Be−5ix .

Using Euler’s identity eiθ = cos θ + i sin θ we can write this in the alternative (and possibly
more convenient if the boundary conditions are given as real quantities) form

y(x) = C cos(x) + D sin(x) ,
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where C and D are given by C = A + B and D = i(A− B).

b) The associated equation is
k2 − 25 = 0 ,

and the two solutions for k are k = 5 and k = −5. The general solution for y(x) is therefore

y(x) = Ae5x + Be−5x .

c) The associated equation is

0 = k2 + 2k + 1 = (k + 1)2 . (10)

This equation has a “repeated root” at k = −1. (Because the equation is a second-order
polynomial, it has two solutions, which are both k = −1.) When the associated equation
has one repeated root k, the differential equation has one solution given by y1 = Aekx,
and another given by y2 = Bxekx. This can be verified by substituting y1(x) and y2(x)
into the original differential equation and observing that both do satisfy the differential
equation. The general solution is therefore

y(x) = Ae−x + Bxe−x .

d) The associated equation is
0 = k2 + 2k + 6 .

The two solutions to this equation can be found using the quadratic formula:

k1 = −1 +
√

5i and k2 = −1−
√

5i .

The general solution for y(x) is therefore

y(x) = Ae(−1+
√

5x + Be(−1−
√

5)x .

Using Euler’s identity we can write this in the potentially more convenient and intuitive
form

y(x) = e−x
[
C cos(

√
5x) + D sin(

√
5x)
]

.

3 Ordinary differential equations II.
a) The ordinary differential equation has the associated equation

k− 4 = 0 ,

which gives k = 4 and the general solution y(x) = Ae4x. We apply the condition y(0) = 1
and obtain A = 1. The solution is hence

y(x) = e4x .
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It can be verified that this satisfies the differential equation and the condition y(0) = 1.

b) We separate variables by writing the differential equation as

dy
dx

= 4y ,

so dividing by y and multiplying by dx yields

dy
y

= 4 dx .

We can then integrate both sides. We have the indefinite integrals∫ dy
y

= ln y + A , and
∫

4 dx = 4x + B .

We thus find that
ln y = 4x + C ,

where A is the single undetermined constant in the problem. We then take the exponential
of this equation. Since eln y = y, we find

y = e4x+C = De4x ,

where we have introduced a new undetermined constant D = eC for convenience. As in
part a), applying the condition y(0) = 1 yields D = 1 and the solution

y(x) = e4x .

4 In steady state, the temperature of the wire is governed by

k
d2T
dx2 + S = 0 .

Since k and S are constants, we can integrate once to obtain

dT
dx

=

(
S
k

)
x + A ,

where A is a constant. We can either integrate again, or apply the boundary condition
(which is a simpler option here). Applying the condition ∂T/∂x = f at x = 1 implies that

f =
S
k
+ A ,

and so A = f − S/k. We have then

dT
dx

=
S
k
(x− 1) + f .
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Integrating again, we find

T(x) =
S
k

(
1
2 x2 − x

)
+ f x + B .

The condition T(x = 0) = 0 determines B, and we find B = 0. The final solution is
therefore

T(x) =
S
2k

x2 + ( f − S/k) x .

5 Before we solve this problem, we note an error in the problem statement. The variable-
area heat condition equation is actually

A
∂T
∂t

=
∂

∂x

(
kA

∂T
∂x

)
.

This error does not affect the solutions. Another note concerns about dimensions. The
form given for A(x) is dimensional; in particular the dimensions of A(x) are determined
by A0, which, naturally, has dimensions of area. This implies that the denominator 1 +
x2/5 is dimensionless. Thus, because x has dimensions of meters, we must have that “x2”
has dimensions meters2, and that “5” is properly interpreted as also having dimensions of
meters2. This unfortunate confusion would have been avoided if the problem statement
had been written

A(x) =
A0

1 + x2/A1
,

where A0 = 1 m2 and A1 = 5 m2. In any case, on to the answers. . .

1. In steady-state, we have ∂T/∂t = 0, and the variable-area heat conduction equation
becomes

k
d

dx

(
A

dT
dx

)
= 0 ,

where we have moved k outside of the derivative because it is constant. We first
divide both sides by k to eliminate it. We can then integrate once to find

A
dT
dx

= C ,

where C is a constant. Our equation for dT/dx is therefore

dT
dx

= CA(x) = C
(

1 + 1
5 x2
)

.

Integrating again to find T, we find

T = C
(

x + 1
15 x3

)
+ D ,

where D is another constant. The condition T(0) = 18 ◦C implies that D = 18 ◦C.
The condition T(1) = 22 ◦C implies that

22 ◦C = C
16
15

m + 18 ◦C ,
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and therefore
C = 4 ◦C× 15

16
1
m

=
15
4
◦C/m .

We thus have for T(x),
T(x) = 15

4

(
x + 1

15 x3
)
+ 18 ,

where x is in meters and T is in ◦C.

2. In the heat conduction equation, we are not concerned with the absolute value of the
temperature, but rather its rate of change: its x-gradient, ∂T/∂x (and ∂2T/∂x2), and
its time-rate of change ∂T/∂t. Since Kelvin and Celsius differ only by a constant, the
heat-conduction equation is identical whether T is expressed in Kelvin of Celsius.
Another way to see this is to substitute

T(x, t) = TK(x, t) + 273.15 ,

into the heat equation and derive an equation for TK(x, t), or temperature in Kelvin.
Compare this to the equation for T(x, t): they are the same.
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