
MAE105 Introduction to Mathematical Physics Spring Quarter 2015
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Homework 2

Due April 24, 2015.

1 Separation of Variables: mixed boundary conditions. Consider the heat equation,

∂u
∂t

= k
∂2u
∂x2 ,

with boundary conditions

k
∂u
∂x

(x = 0, t) = 0 , and u(x = L, t) = 0 ,

and the linear initial condition

u(x, t = 0) = a(x− L) .

(a) What is the steady-state solution when ∂u/∂t = 0?

(b) Use separation of variables to solve the initial value problem for u(x, t).

2 Separation of Variables: A pretty bad model for combustion. Consider the same
heat equation as above, but with source cu (proportional to u), where c is a constant.
This heat-dependent source term might (poorly) model a source of heat arising from, for
example, a chemical reaction like combustion. The heat equation becomes

∂u
∂t

= k
∂2u
∂x2 + cu .

Assume insulating boundary conditions such that

∂u
∂x

(x = 0, t) =
∂u
∂x

(x = L, t) = 0 .

(a) Use separation of variables to find the general solution as a series of cosines.

(b) What is the critical value of c for which u(x, t) can increase in time?
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3 Time-dependent forcing: The sun heating the ocean. Let’s try to model for how the
sun heats the ocean surface. We use the boundary conditions

u(z = 0, t) = u0eiωt and
∂u
∂z

(z→ −∞, t)→ 0 ,

where z = 0 is the ocean surface and as z → −∞ we are descending into the abyssal
depths of the ocean. We propose to model the action of the sun as a source term in the
heat equation by solving

∂u
∂t

= k
∂2u
∂z2 + Q0ez/λeiωt .

(a) Assume ω = 0 and ∂u/∂t = 0. Find the steady-state solution to the problem.

(b) Now solve the problem with ω 6= 0. Propose u(z, t) = w(z)eiωt, then derive an
equation for w(z). Solve this equation.

(c) Write down the real part of your solution for w(z). This is the solution you would
find if you replaced “eiωt” in the source term and boundary condition with cos(ωt).
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3 Laplace’s equation in a square. Consider Laplace’s equation in Cartesian coordinates
in (x, y),

∂2u
∂x2 +

∂2u
∂y2 = 0 ,

with the boundary conditions

u(x = 0, y) = −1 , u(x, y = 0) = 0 ,
u(x = L, y) = 1 , u(x, y = L) = 0 .

A sketch is given below.
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Figure 1: “Sketch” for problem 4.

(a) Use the principle of superposition and separation of variables to find u(x, y) which
satisfies the governing equation and all boundary conditions.

(b) What is the solution for u(x, y) when the boundary conditions at y = 0 and y = L are
both changed to

∂u
∂y

= 0 ?

Finding the solution should not require more than a line or two of calculation. Hint:
will the solution depend on y?
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4 Laplace’s equation outside a disk. Consider Laplace’s equation outside the disk with
radius a. The domain thus extends from r = a to ∞. Laplace’s equation in polar coordi-
nates is

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2 = 0 .

The boundary condition at r = a is

∂u
∂r

(r = a, θ) = 1 + 2 sin θ .

The boundary condition as r → +∞ is

∇u(r → ∞, θ)→ 0 .

A sketch is below.
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Figure 2: “Sketch” for problem 5.

(a) Solve for u(r, θ). Hint: your solution will contain an undeterminable constant. This is
because there are two solutions with no θ-dependence.
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