Homework 2

Due April 24, 2015.

1 Separation of Variables: mixed boundary conditions. Consider the heat equation,

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}
$$

with boundary conditions

$$
k \frac{\partial u}{\partial x}(x=0, t)=0, \quad \text { and } \quad u(x=L, t)=0
$$

and the linear initial condition

$$
u(x, t=0)=a(x-L)
$$

(a) What is the steady-state solution when $\partial u / \partial t=0$?
(b) Use separation of variables to solve the initial value problem for $u(x, t)$.

2 Separation of Variables: A pretty bad model for combustion. Consider the same heat equation as above, but with source $c u$ (proportional to u), where c is a constant. This heat-dependent source term might (poorly) model a source of heat arising from, for example, a chemical reaction like combustion. The heat equation becomes

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+c u
$$

Assume insulating boundary conditions such that

$$
\frac{\partial u}{\partial x}(x=0, t)=\frac{\partial u}{\partial x}(x=L, t)=0 .
$$

(a) Use separation of variables to find the general solution as a series of cosines.
(b) What is the critical value of c for which $u(x, t)$ can increase in time?

3 Time-dependent forcing: The sun heating the ocean. Let's try to model for how the sun heats the ocean surface. We use the boundary conditions

$$
u(z=0, t)=u_{0} \mathrm{e}^{\mathrm{i} \omega t} \quad \text { and } \quad \frac{\partial u}{\partial z}(z \rightarrow-\infty, t) \rightarrow 0
$$

where $z=0$ is the ocean surface and as $z \rightarrow-\infty$ we are descending into the abyssal depths of the ocean. We propose to model the action of the sun as a source term in the heat equation by solving

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial z^{2}}+Q_{0} \mathrm{e}^{z / \lambda} \mathrm{e}^{\mathrm{i} \omega t}
$$

(a) Assume $\omega=0$ and $\partial u / \partial t=0$. Find the steady-state solution to the problem.
(b) Now solve the problem with $\omega \neq 0$. Propose $u(z, t)=w(z) \mathrm{e}^{\mathrm{i} \omega t}$, then derive an equation for $w(z)$. Solve this equation.
(c) Write down the real part of your solution for $w(z)$. This is the solution you would

3 Laplace's equation in a square. Consider Laplace's equation in Cartesian coordinates in (x, y),

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

with the boundary conditions

$$
\begin{array}{ll}
u(x=0, y)=-1, & u(x, y=0)=0 \\
u(x=L, y)=1, & u(x, y=L)=0 .
\end{array}
$$

A sketch is given below.

Figure 1: "Sketch" for problem 4.
(a) Use the principle of superposition and separation of variables to find $u(x, y)$ which satisfies the governing equation and all boundary conditions.
(b) What is the solution for $u(x, y)$ when the boundary conditions at $y=0$ and $y=L$ are both changed to

$$
\frac{\partial u}{\partial y}=0 ?
$$

Finding the solution should not require more than a line or two of calculation. Hint: will the solution depend on y ?

4 Laplace's equation outside a disk. Consider Laplace's equation outside the disk with radius a. The domain thus extends from $r=a$ to ∞. Laplace's equation in polar coordinates is

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0 .
$$

The boundary condition at $r=a$ is

$$
\frac{\partial u}{\partial r}(r=a, \theta)=1+2 \sin \theta
$$

The boundary condition as $r \rightarrow+\infty$ is

$$
\nabla u(r \rightarrow \infty, \theta) \rightarrow 0
$$

A sketch is below.

Figure 2: "Sketch" for problem 5.
(a) Solve for $u(r, \theta)$. Hint: your solution will contain an undeterminable constant. This is because there are two solutions with no θ-dependence.

