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Homework 2 Solutions

Due April 24, 2015.

1 Separation of Variables: mixed boundary conditions. Consider the heat equation,

∂u
∂t

= k
∂2u
∂x2 ,

with boundary conditions

k
∂u
∂x

(x = 0, t) = 0 , and u(x = L, t) = 0 ,

and the linear initial condition

u(x, t = 0) = a(x− L) .

(a) What is the steady-state solution when ∂u/∂t = 0?

(b) Use separation of variables to solve the initial value problem for u(x, t).

Solution.
(a) The steady-state solution is u(x, t) = 0.

(b) We use separation of variables by proposing u = f (x)g(t). By substituting this into
the governing equation and dividing by k f g, we find

g′

kg
=

f ′′

f
= −λ,

where we have set the two sides of the equation equal to a separation constant −λ.
We thus obtain two ODE’s for f (x) and g(t). The equation for g(t) is

g′ + kλg = 0 ,

which has the solution
g = Ce−kλt .

The equation for f (x) is
f ′′ + λ f = 0 ,
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and the solution is
f = A sin

(√
λx
)
+ B cos

(√
λx
)

.

The boundary conditions on f (x) follow from the boundary conditions on u(x, t),
and are f ′(0) = 0 and f (L) = 0. The condition f ′(0) = 0 implies that A = 0. The
condition at x = L implies

0 = B cos
(√

λL
)

.

The only non-trivial solutions are thus found when cos(
√

λL) = 0. Being well-
acquainted with the cosine function, we know it will have zeros when

√
λL is π/2,

3π/2, etc. Another way to say this is
√

λL = (n − 1/2)π for n a positive integer.
Therefore we find that the spatial modes have the form

f = B cos
[(

n− 1
2

) πx
L

]
.

The general solution for u is a sum of all modes, and is thus

u(x, t) =
∞

∑
n=1

Bn cos
[(

n− 1
2

) πx
L

]
exp

{
−
(

n− 1
2

)2 π2

L2 kt
}

.

We use the initial condition to determine the coefficients Bn. At t = 0 we have

u(x, 0) = a(x− L) =
∞

∑
n=1

Bn cos
[(

n− 1
2

) πx
L

]
.

To find the Bn’s, we multiply this equation by cos((m− 1/2)πx/L) and integrate from
0 to L. This yields

Bn =
2
L

∫ L

0
a(x− L) cos

[(
n− 1

2

) πx
L

]
dx .

We can evaluate this integral fairly easily with integration by parts. We find

Bn = − 2aL
(

n− 1
2

)2
π2

= − 8aL
(2n− 1)2π2 .

The solution is therefore

u(x, t) = −
∞

∑
n=1

8aL
(1− 2n)2π

cos
[(

n− 1
2

) πx
L

]
exp

{
−
(

n− 1
2

)2 π2

L2 kt
}

.

A plot of the evolution of u(x, t) is shown in Figure 1.
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Figure 1: The solution u(x, t) to 1(b) at various times t.

2 Separation of Variables: A pretty bad model for combustion. Consider the same
heat equation as above, but with source cu (proportional to u), where c is a constant.
This heat-dependent source term might (poorly) model a source of heat arising from, for
example, a chemical reaction like combustion. The heat equation becomes

∂u
∂t

= k
∂2u
∂x2 + cu .

Assume insulating boundary conditions such that

∂u
∂x

(x = 0, t) =
∂u
∂x

(x = L, t) = 0 .

(a) Use separation of variables to find the general solution as a series of cosines.

(b) What is the critical value of c for which u(x, t) can increase in time?

Solution.
(a) To use separation of variables, we propose u of the form u(x, t) = f (x)g(t). Substi-

tuting this into the governing equation yields

f g′ = kg f ′′ + c f g .

Next, we multiply by 1/k f g, and move the “c” term over to the left side. This gives

g′

kg
− c

k
=

f ′′

f
.
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Per the usual separation of variables argument, because either side is dependent ei-
ther on x or t but not both, we can only conclude that they are equal to a constant,
which we call −λ. Note that we could have put the constant term c/k on either side;
it only seems that including it with the g-equation is simpler.

The f -equation is
f ′′ + λ f = 0 .

We showed in class that, with the boundary condition f ′(0) = f ′(L) = 0, the solutions
are cosines of the form

f (x) = A cos
(nπx

L

)
,

where we have found that λ = (nπ/L)2. It is easy to verify that this satisfies the
boundary conditions. The g-equation is

g′ + (kλ− c)g = 0 ,

and the solution is
g = Ce−kλtect .

The general solution is therefore

u(x, t) = ect
∞

∑
n=1

Bn cos
(nπx

L

)
exp

{
−k
(nπ

L

)2
t
}

.

(b) Because of the ect term in front, it is possible for u(x, t) to increase in time, as opposed
to decreasing like we normally expect. Note that the modes of u(x, t) (correspond-
ing to values of n) decay at different rates – and the first mode (n = 1) decays the
slowest. Thus as c increases from 0, it is the first mode which first can grow. The
time-dependence of the first mode is

exp
{(

c− kπ2

L2

)
t
}

.

Thus, the amplitude of the first mode grows in time when

c >
kπ2

L2 .

When c is less than kπ2/L2, none of the modes can grow and the solution decreases
in time. When c equals kπ2/L2, the amplitude of the first mode is constant, while the
higher modes decay to zero.

3 Time-dependent forcing: The sun heating the ocean. Let’s try to model for how the
sun heats the ocean surface. We use the boundary conditions

u(z = 0, t) = u0eiωt and
∂u
∂z

(z→ −∞, t)→ 0 ,
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where z = 0 is the ocean surface and as z → −∞ we are descending into the abyssal
depths of the ocean. We propose to model the action of the sun as a source term in the
heat equation by solving

∂u
∂t

= k
∂2u
∂z2 + Q0ez/λeiωt .

(a) Assume ω = 0 and ∂u/∂t = 0. Find the steady-state solution to the problem.

(b) Now solve the problem with ω 6= 0. Propose u(z, t) = w(z)eiωt, then derive an
equation for w(z). Solve this equation.

(c) Write down the real part of your solution for w(z). This is the solution you would
find if you replaced “eiωt” in the source term and boundary condition with cos(ωt).

Solution.
(a) When ω = 0 and ∂u/∂t = 0, the governing equation reduces to

0 = k
d2u
dz2 + Q0ez/λ ,

with the boundary conditions u(0, t) = u0 and du/dz→ 0 as z→ −∞. This equation
is easily integrated. First we rearrange it to obtain,

d2u
dz2 = −Q0

k
ez/λ .

One integration yields
du
dz

= −λQ0

k
ez/λ + A ,

and another yields

u = −λ2Q0

k
ez/λ + Az + B .

The condition that du/dz→ 0 as z→ −∞ means that A = 0 (otherwise du/dz equals
a constant as z→ −∞). The condition at z = 0 implies

u0 = −λ2Q0

k
+ B ,

and from this we deduce that

B =
λ2Q0

k
+ u0 .

The steady-state solution is then

u(z, t) = u0 +
λ2Q0

k

(
1− ez/λ

)
.
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(b) We propose u(z, t) = w(z)eiωt. Substituting this into the governing equation yields

w
(

iωeiωt
)
= keiωtw′′ + Q0ez/λeiωt .

Because every term depends on eiωt, we can remove this from the equation. This
yields

w′′ − iω
k

w = −Q0

k
ez/λ .

The boundary conditions on w are w = u0 at x = 0 and w′ → 0 as z → −∞. The
homogeneous solution to this equation (the part of the solution that satisfies w′′ −
iωw/k = 0) is

wh = Aez
√

iω/k + Be−z
√

iω/k .

The particular part of the solution can be found by guessing a solution of the form
wp = Cez/λ. Plugging this into the differential equation yields

ez/λC
(

λ−2 − iω/k
)
= −Q0

k
ez/λ ,

which implies that

C =
Q0

k (λ−2 − iω/k)
=

Q0λ2

k
1 + iλ2ω/k

1 + (λ2ω/k)2 .

To make our lives a little bit easier, let’s define Q̃ = Q0λ2/k, ε = λ2ω/k and ` =√
k/ω (note that ε = λ2/`2). The total solution can then be written

w = Aez
√

i/` + Be−z
√

i/` +
1 + iε
1 + ε2 Q̃ez/λ .

The condition that w′ → 0 as z→ −∞ requires B = 0. The condition at z = 0 implies

u0 = A +
1 + iε
1 + ε2 Q̃ ,

and so
A = u0 −

1 + iε
1 + ε2 Q̃ .

The final solution for w(z) is then

w(z) = u0ez
√

i/` +
1 + iε
1 + ε2 Q̃

(
ez/λ − ez

√
i/`
)

.

(c) Finding the real part of w(z) takes some care. We use the fact that

√
i =

1√
2
(i + 1) .
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This implies that
Re
[
ez
√

i/`
]
= ez/

√
2` cos(z/

√
2`) ,

and
Re
[
iez
√

i/`
]
= −ez/

√
2` sin(z/

√
2`)

Therefore

Re [w(z)] = u0ez/
√

2` cos(z/
√

2`)

+
Q̃

1 + ε2

(
ez/λ − ez/

√
2` cos(z/

√
2`)
)
+

εQ̃
1 + ε2 ez/

√
2` sin(z/

√
2`) ,

= u0ez/
√

2` cos(z/
√

2`) +
Q̃

1 + ε2

[
ez/λ − ez/

√
2`
(

cos(z/
√

2`)− ε sin(z/
√

2`)
)]

.
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3 Laplace’s equation in a square. Consider Laplace’s equation in Cartesian coordinates
in (x, y),

∂2u
∂x2 +

∂2u
∂y2 = 0 ,

with the boundary conditions

u(x = 0, y) = −1 , u(x, y = 0) = 0 ,
u(x = L, y) = 1 , u(x, y = L) = 0 .

A sketch is given below.

u = �1 u = 1

u = 0

u = 0

L

@2u

@x2
+

@2u

@y2
= 0

Figure 2: “Sketch” for problem 4.

(a) Use the principle of superposition and separation of variables to find u(x, y) which
satisfies the governing equation and all boundary conditions.

(b) What is the solution for u(x, y) when the boundary conditions at y = 0 and y = L are
both changed to

∂u
∂y

= 0 ?

Finding the solution should not require more than a line or two of calculation. Hint:
will the solution depend on y?

Solution.
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(a) We use separation of variables to find u1 and u2. First, we substitute u = f (x)g(y)
into the differential equation, and divide by f (x)g(y). This yields

f ′′

f
= −g′′

g
.

The left side of the equation is a function of x only, while the right side is a function
of y. Thus they can only be equal if they are both equal to a constant, which we call
λ, and which implies

f ′′

f
= −g′′

g
= λ .

We then obtain the two equations

f ′′ − λ f = 0 , g′′ + λg = 0 ,

with the boundary conditions The equation for f is a boundary value problem with
inhomogeneous boundary conditions, whereas the equation for g is an eigenvalue
problem which determines the permissible values of λ.

For both problems, the g-equation has solutions of the form

g = a sin(
√

λy) + b cos(
√

λy) .

The boundary condition g(y = 0) = 0 implies B = 0, and g(y = L) = 0 implies
λ = (nπ/L)2, where n is a positive integer.

We decompose u into
u(x, y) = u1(x, y) + u2(x, y) .

The solution u1 satisfies u1 = 1 at x = L and u1 = 0 on the three other boundaries,
while the solution u2 satisfies u2 = −1 at x = 0, and u2 = 0 on the other boundaries.

For u1, the solution for f1 which satisfies f1 = 0 at x = 0 is

f1 = cn sinh(nπx/L) .

The total solution for u1 is

u1 =
∞

∑
n=1

An sinh(nπx/L) sin(nπy/L) .

We find the value for A using the boundary condition at x = L, which implies

1 =
∞

∑
n=1

An sinh(nπ) sin(nπy/L)
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Multiplying by sin(nπy/L) and integrating over the domain implies

An =
2

nπ sinh(nπ)
(1− cos(nπ)) , (1)

=
4

nπ sinh(nπ)
×
{

1 n odd ,
0 n even (2)

We can write the odd n as n = 2p− 1, and rewrite this as

Ap =
4

(2p− 1)π sinh((2p− 1)π)
, for p = 1, 2, 3, . . . .

Therefore

u1(x, y) =
∞

∑
p=1

4 sinh((2p− 1)πx/L)
(2p− 1)π sinh((2p− 1)π)

sin(nπy/L) .

The problem for u2 is very similar, except that the solution for f2 is

f2 = dn sinh(nπ(x− L)/L) .

This solution satisfies f2(x = L) = 0. At x = 0, we have

−1 =
∞

∑
n=1

An sinh(−nπ) sin(nπy/L) .

The A′ns are therefore identical to before, and we find

u2 =
∞

∑
p=1

4 sinh((2p− 1)π(x− L)/L)
(2p− 1)π sinh((2p− 1)π)

sin(nπy/L) .

The total solution, u = u1 + u2, is then

u =
∞

∑
p=1

4 sin
(
(2p−1)πy

L

)

(2p− 1)π sinh((2p− 1)π)

[
sinh

(
(2p− 1)πx

L

)
+ sinh

(
(2p− 1)π

L
(x− L)

)]
.

The solution for u(x, y) is plotted in figure 3.

(b) The hint strongly suggests that the solution will not depend on y. This means we
simply need to solve

d2u
dx2 = 0 ,

with u(0) = −1 and u(L) = 1. The solution is a straight line between −1 and 1, or

u = −1 +
2x
L

.

It is easy to check that this satisfies boundary conditions. Alternatively, we could ob-
tain the solution using the procedure in (a). The resulting lengthy calculation would
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Figure 3: The solution u(x, y) to 3(a) (the second 3).

reveal that the y-modes are cosines, but that the only mode remaining that satisfies
the boundary conditions is the one for which λ = 0; i.e., the one that does not depend
on y.

Note that if we find a solution to Laplace’s equation which satisfies the boundary
conditions, we are guaranteed that this is the single correct solution. Thus for simple
problems, finding the solution by educated guess is a legitimate and powerful tool.

4 Laplace’s equation outside a disk. Consider Laplace’s equation outside the disk with
radius a. The domain thus extends from r = a to ∞. Laplace’s equation in polar coordi-
nates is

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2 = 0 .

The boundary condition at r = a is

∂u
∂r

(r = a, θ) = 1 + 2 sin θ .
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The boundary condition as r → +∞ is

∇u(r → ∞, θ)→ 0 .

A sketch is below.

r ! 1

@u

@r
= 1 + 2 sin ✓

1

r

@

@r

✓
r
@u

@r

◆
+

1

r2

@2u

@✓2
= 0

r = a

Figure 4: “Sketch” for problem 5.

(a) Solve for u(r, θ). Hint: your solution will contain an undeterminable constant. This is
because there are two solutions with no θ-dependence.

Solution. To use separation of variables we propose u(r, θ) = f (r)g(θ) and plug this
into the governing equation. After multiplying by r2/ f g and rearranging, we obtain

r
f
(
r f ′
)′
= −g′′

g
= λ .

The g-equation is the eigenvalue problem. Note that θ goes from θ = 0 to θ = 2π, and we
have periodic conditions on g such that

g(0) = g(2π) and g′(0) = g′(2π) .

The g-equation is therefore
g′′ + λg = 0 ,

which has the solution
g = A sin

(√
λθ
)
+ B cos

(√
λθ
)

.
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Both are valid solutions under periodic boundary conditions given that
√

λ = n, where n
is an integer. Notice that n = 0 corresponds to the non-trivial solution where g is constant
and u(r, θ) does not depend on θ. Given that λ = n2, the equation for f is

r2 f ′′ + r f ′ − n2 f = 0 .

When n > 0, we can solve this equation by proposing f = Crα. We then have f ′ = Cαrα−1

and f ′′ = C(α2 − α)rα−2, which implies that

α2 − n2 = 0 ,

and α = ±n. Thus, for n > 0, we find

f = Crn + Dr−n .

One of our boundary conditions is that ∇u→ 0 as r → ∞. Note that

∇u =
∂u
∂r

r̂ +
1
r

∂u
∂θ

θ̂̂θ̂θ ,

where r̂ and θ̂̂θ̂θ are unit vectors in the r- and θ-directions, respectively. As a consequence,
we must have both that f ′ → 0 and that f /r → 0 as r → ∞. The solution f = Crn is
incompatible with this condition and, therefore, we must have C = 0.

However, this is not the whole solution, since there are valid solutions which do not
depend on θ, corresponding to the case n = 0. In this case, the equation for f is

r f ′′ + f ′ = 0 .

To solve this equation, we propose the form f ′ = Erα, which implies that α = −1. Thus

f ′ =
E
r

,

and
f = E ln r + F .

This comprises the part of the solution independent of θ. Both f = F and f = E ln r satisfy
the conditions that f ′ → 0 and f /r → 0 as r → ∞. The total solution for u(r, θ) is then

u(r, θ) = F + E ln r +
∞

∑
n=1

r−n (An sin(nθ) + Bn cos(nθ)) .

Thus, we can calculate ∂u/∂r,

∂u
∂r

=
E
r
+

∞

∑
n=1

(
−nr−n−1

)
(An sin(nθ) + Bn cos(nθ)) ,
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and at r = a we must have

∂u
∂r

∣∣∣
r=a

= 1 + 2 sin(θ) =
E
a
+

∞

∑
n=1

(
−na−n−1

)
(An sin(nθ) + Bn cos(nθ)) .

Next, we multiply both sides by sin(θ) and integrate from θ = 0 to θ = 2π. We then find
that

2
∫ 2π

0
sin2(θ)dθ = −a−2A1

∫ 2π

0
sin2(θ)dθ ,

where all the other terms corresponding to Bn and An for n 6= 1 have disappeared, a
consequence of the orthogonality of sines and cosines. We then find that

A1 = −2a2 .

The other part of the initial condition can be obtained simply by integrating from 0 2π
(one might think of this as multiplying by cos(0 ∗ θ) and integrating). All the sines and
cosines disappear, and we are left with

2π = 2π
E
a

, which implies E = a .

The total solution for u(r, θ) is therefore

u(r, θ) = F + a ln r− 2a2

r
sin(θ) .

The given boundary conditions do not permit evaluation of F – this is the best we can do!
Notice that this form satisfies the boundary conditions and the governing equation.
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