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Homework 3

Due April 29, 2015.

1 Review of inhomogeneous equations. Give the general solution to the following
ODEs:

(a) y′′ − 4y = ex ,

(b) y′′ + 4y = sin(2x) ,

(c) x2y′′ + 2xy′ + y = 0 ,

(d) x2y′′ + 3xy′ + y = 0 .

Hint: one of these questions involves resonance and one has a repeated root. In these cases, consider
solutions of the form x ekx or xβ ln x (where k can be imaginary).

Solution.
(a) The homogeneous solution to (a) solves y′′ − 4y = 0 and can be found by plugging

in yh = Aekx into the governing equation. This yields that k = ±2, and that the
homogeneous solution is

yh(x) = Ae2x + Be−2x .

Since the forcing term, ex, does not match any of the homogeneous solutions, it is
not resonant. An exponential function is particularly simple in that we can guess a
particular solution yp(x) = Cex, plug this into the governing equation, and solve for
C. This yields

y′′p − 4yp = Cex
(

1− 4
)
= ex .

This implies that C = −1/3, and the general solution is

y(x) = yh + yp = Ae2x + Be−2ex − 1
3ex .

(b) The homogeneous solution is

yh(x) = A sin(2x) + B cos(2x) .

It is apparent that the forcing term takes the form of one of the homogeneous solu-
tions, sin(2x). This is called “resonant forcing”. First, we use the identity

eiθ = cos(θ) + i sin(θ) ,
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to write the governing equation as

y′′ + 4y =
i
2

(
e−2ix − e2ix

)
.

Next, we propose a particular solution of the form yp = Cxekx. We then have

yp = Cxekx , (1)

y′p = Cekx
(

kx + 1
)

, (2)

y′′p = Cekx
(

k2x + 2k
)

. (3)

Putting this into the governing equation yields

Cxekx
(

k2 + 4
)
+ 2kCekx =

i
2

(
e−2ix − e2ix

)
.

The first term involving Cxekx can only match the right side if k2 + 4 = 0, or if k = ±2i.
This leaves us with two equations, one for k = +2i and one for k = −2i, which allow
us to choose two constants, C+ and C−, to match the right hand side. In other words,

4iC+e2ix = − i
2e2ix ,

and
−4iC−e−2ix = i

2e−2ix .

These equations imply that both C+ and C− are

C+ = C− = −1
8 .

The particular solution is then

yp = −1
8 x
(

e2ix + e−2ix
)
= −1

4 x cos(2x) ,

where for the last step we again use Euler’s identity.

(c) This is an “equidimensional” equation. To solve this type of equations we propose a
solution of the form y = Axα. We then have

y = Axα , (4)

y′ = Aαxα−1 , (5)

y′′ = Aα(α− 1)xα−2 . (6)

Plugging these into the governing equation yields the “characteristic equation” for α,

α2 − α + 2α + 1 = α2 + α + 1 = 0 .
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We can find the solution using the quadratic equation,

α = 1
2

(
− 1±

√
1− 4

)
= −1

2
± i
√

3
2

.

Note that the properties of logarithms imply that

xıβ = eiβ ln x = cos (β ln x) + i sin (β ln x) .

So, our two solutions are

y1 = Ax(−1+i
√

3)/2 and y2 = Bx(−1−i
√

3)/2 ,

and the general solution is

y = Ax(−1+i
√

3)/2 + Bx(−1−i
√

3)/2 = x−1/2

[
C cos

(√
3

2 ln x
)
+ D sin

(√
3

2 ln x
) ]

.

(d) If we propose a solution of the form y = Axα, the characteristic equation for α is

α2 − α + 3α + 1 =
(

α + 1
)2

= 0 .

This is the case of a repeated root, where both the roots of α are -1. We thus have
only found one solution, y1 = Ax−1 = A/x. To find the second solution, we guess a
solution of the form

y2 = Bxβ ln x .

We then have

y2 = Bxβ ln x , (7)

y′2 = Bβxβ−1 ln x + xβ−1 , (8)

y′′2 = Bβ(β− 1)xβ−2 ln x + Bβxβ−2 + B(β− 1)xβ−2 . (9)

Plugging this into the governing equation yields

0 = Bxβ−2 ln x
(

β2 − β + 3β + 1
)
+ Bxβ−2

(
2β− 1 + 3

)
(10)

= Bxβ−2 ln x
(

β + 1
)2

+ Bxβ−2
(

2β + 2
)

. (11)

From this we deduce (as we might have expected) that β = −1 and y2 = B ln x/x.
The total solution is then

y = Ax−1 + Bx−1 ln x .
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2 Fourier sine and cosine series’.

(a) Find the Fourier sine series of
f (x) = ex ,

on the interval 0 ≤ x ≤ L.

(b) Find the Fourier cosine series of f (x) on the same interval.

Hint: consider the real and imaginary parts of the integral
∫ L

0 ex+inπx/L dx.

Solution.
1. The Fourier sine series of a function f (x) on the interval 0 to L is defined as

fs(x) =
∞

∑
n=1

An sin
(nπx

L

)
,

where the coefficients An are given by

An =
2
L

∫ L

0
f (x) sin

(nπx
L

)
dx .

Using f (x) = ex yields the integral

An =
2
L

∫ L

0
ex sin

(nπx
L

)
dx .

One way to evaluate this integral is to note that

Im
[
einπx/L

]
= sin

(nπx
L

)
.

The operation Im[·] means that we take the imaginary part of whatever is inside the
brackets. Therefore, we can rewrite the integral for An as

An =
2
L

Im

[ ∫ L

0
ex+inπx/L dx

]
.

The integral in the brackets is easily found,∫ L

0
ex+inπx/L dx =

1
1 + inπ/L

ex(1+inπ/L)
∣∣∣L
0

, (12)

=
1

1 + inπ/L

(
eLeinπ − 1

)
. (13)

Note that einπ = −1 when n is odd and 1 when n is even, which means we can write
einπ = (−1)n. Also,

1
1 + inπ/L

=
L (L− inπ)

L2 + (nπ)2 ,
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which can be shown by first multiplying top and bottom by L, and then by (L −
inπ). We therefore find that

Im

[ ∫ L

0
ex+inπx/L dx

]
= − Lnπ

L2 + (nπ)2

(
eL(−1)n − 1

)
,

and that
An =

2nπ

L2 + (nπ)2

(
1− eL(−1)n

)
.

The Fourier sine series of ex on the interval x = 0 to x = L is therefore

fs(x) =
∞

∑
n=1

2nπ

L2 + (nπ)2

(
1− eL(−1)n

)
sin
(nπx

L

)
.

2. The cosine series, fortunately, can be calculated very easily using previous results.
The cosine series is defined

fc(x) =
∞

∑
n=0

Bn cos
(nπx

L

)
,

where B0 is defined by

B0 =
1
L

∫ L

0
f (x)dx ,

and the rest of the Bn for n > 0 are defined by

Bn =
2
L

∫ L

0
f (x) cos

(nπx
L

)
.

Using Euler’s identity we can show, similar to part (a), that

Bn =
2
L

Re

[ ∫ L

0
f (x) cos

(nπx
L

) ]
.

We already calculated the integral; all we have to do is take the real part, instead of
the imaginary part. The real part is

Re

[ ∫ L

0
f (x) cos

(nπx
L

) ]
=

L2

L2 + (nπ)2

(
eL(−1)n − 1

)
.

Therefore, the Bn (for n > 0are given by

Bn =
2L

L2 + (nπ)2

(
eL(−1)n − 1

)
.

For n = 0, we have

B0 =
1
L

∫ L

0
ex dx = ex

∣∣∣L
0
=

1
L

(
eL − 1

)
.

The Fourier cosine series of f (x) is therefore

fc(x) =
eL − 1

L
+

∞

∑
n=0

2L
L2 + (nπ)2

(
eL(−1)n − 1

)
cos

(nπx
L

)
.
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3 Fourier Series. For a periodic function on the interval −π ≤ x ≤ π, the Fourier
representation is

f (x) = a0 +
∞

∑
n=1

an cos(nx) + bn sin(nx) .

For the functions in (a) and (b), find the coefficients an and bn.

(a) f (x) =

{
0 for x ≤ −π/2 and x ≥ π/2
1 for −π/2 < x < π/2 (14)

(b) f (x) =

{
x + π for x ≤ 0
π − x for x > 0 (15)

Solution. The coefficients an and bn are given by the following formulas

n = 0 , a0 =
1

2π

∫ π

−π
f (x)dx , (16)

n > 1 , an =
1
π

∫ π

−π
f (x) cos (nx) dx , (17)

n > 1 , bn =
1
π

∫ π

−π
f (x) sin (nx) dx . (18)

(a) The coefficient a0 is given by

a0 =
1

2π

∫ L

−L
f (x)dx =

1
2π

∫ π/2

−π/2
1 dx = 1

2 .

The coefficients an for n > 1 are given by

an =
1
π

∫ π/2

−π/2
cos (nx) dx =

2
nπ

sin
(nπ

2

)
=

2
nπ

{
(−1)

n−1
2 for n odd

0 for n even .

The coefficients bn are 0. We know this to be true because f (x) is an even function
around x = 0; in other words, f (x) = f (−x) for 0 < x < π. When f (x) is even, it does
not project onto the sine coefficients bn. Conversely, when x is odd, it does not project
onto an. We can also show that the bn are zero in this case by direct computation, since

bn =
1
π

∫ π/2

−π/2
sin (nx) dx = − 1

nπ
cos(nx)

∣∣∣π/2

−π/2
= 0.

Substituting n = 2π − 1 (since an only contributes to the Fourier series when n is
odd), the Fourier series representation can be written

f (x) = 1
2 +

∞

∑
p=1

2(−1)p−1

(2p− 1)π
cos

[
(2p− 1)x

]
.
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(b) The coefficient a0 is given by

a0 =
1

2π

∫ 0

−π
x + π dx +

1
2π

∫ π

0
π − x dx =

1
π

[
1
2 x2 + πx

]0

−π
= 1

2 π .

The coefficients an are

an =
1
π

∫ 0

−π
(x + π) cos(nx)dx +

1
π

∫ π

0
(π − x) cos(nx)dx .

We can simplify this expression by noting that both integrals are equal to one another.
This can be shown by substituting x′ = −x into the second integral, for example. This
substitution implies that dx = −dx. Using the fact that cos(θ) = cos(−θ), we then
find that

I =
1
π

∫ π

0
(π − x) cos(nx)dx , (19)

=
1
π

∫ −π

0

(
π + x′

)
cos(−nx′)(−dx′) , (20)

=
1
π

∫ 0

−π

(
π + x′

)
cos(nx′)dx′ . (21)

In the final step, the negative sign incurred by the swapping of limits cancels the
negative sign in front of −dx′. We can therefore write the expression for an as a
single integral, which can be evaluated using integration by parts. We find

an =
2
π

∫ 0

−π
(x + π) cos(nx)dx , (22)

=
2
n

sin(nx)
∣∣∣0
−π

+
2x
πn

sin(nx)
∣∣∣0
−π
− 2

πn

∫ 0

−π
sin(nx)dx , (23)

=
2

πn2 (1− cos(nπ)) , (24)

=
4

πn2

{
1 n odd ,
0 n even . (25)

The bn are zero, for the same reason in (a). We can show this with direct integration
as well. If we introduce n = 2p− 1, we can write the Fourier series as

f (x) = 1
2 π +

∞

∑
p=1

4
π(2p− 1)2 cos

[
(2p− 1)x

]
.

4 The whacked wave equation. Consider the wave equation,

∂2u
∂t2 − c2 ∂2u

∂x2 = 0 ,

with fixed ends, so that
u(0, t) = u(L, t) = 0 ,
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and two initial conditions: zero initial displacement,

u(x, 0) = 0 ,

and with an initial impulsive whacking velocity of

∂u
∂t

(x, 0) =

{
δ for L/2− δ ≤ x ≤ L/2 + δ ,
0 otherwise ,

where 0 < δ < L/2. Find u(x, t) using separation of variables.

Solution. We use separation of variables by proposing u(x, t) = f (x)g(t). Plugging
this form into the governing equation and multiplying by 1/c2 f g yields

g′′

c2g
=

f ′′

f
.

Applying the usual argument that the groupings to the right and left of the equals sign
can only equal each other if they are each separately equal to a constant, we obtain the
two ODE’s,

f ′′ + λ f = 0 ,

and
g′′ + c2λg = 0 ,

where we have defined the separation constant λ. The spatial boundary conditions on
u(x, t) imply that f (0) = f (L) = 0. These homogeneous boundary conditions on f imply
that the f -equation provides the eigenvalue problem which determines λ. Assuming
that λ > 0, which must be true for f to have non-trivial solutions, the solutions to the
f -equation are

f = A sin
(√

λx
)
+ B cos

(√
λx
)

.

The condition that f (0) = 0 implies that B = 0. The condition that f (L) = 0 implies then
that

0 = A sin
(√

λL
)

.

If A 6= 0, the boundary condition can only be satisfied if sin
(√

λL
)
= 0, which occurs

when √
λL = nπ , which implies that λ =

(nπ

L

)2
.

The solutions to the f -equation are therefore

fn = An sin
(nπx

L

)
.

Correspondingly, the solutions to the g-equation are

g = C sin
(

nπct
L

)
+ D cos

(
nπct

L

)
.
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Since u(x, t = 0) = 0, we must have D = 0. The general solution for u(x, t) is then

u(x, t) = ∑
n=1

An sin
(nπx

L

)
sin
(

nπct
L

)
.

Note that this means

∂u
∂t

= ∑
n=1

Annπc
L

sin
(nπx

L

)
cos

(
nπct

L

)
.

The coefficients An are determined by the initial condition, which implies that

∂u
∂t

(x, t = 0) = φ(x) =
∞

∑
n=1

Annπc
L

sin
(nπx

L

)
,

where φ(x) is

φ(x) =

{
δ for L/2− δ ≤ x ≤ L/2 + δ ,
0 otherwise ,

We obtain an expression for the An by multiplying the expression for φ(x) by sin (mπx/L)
and integrating from x = 0 to x = L. This yields the expression∫ L

0
φ(x) sin

(mπx
L

)
dx =

Ammπc
L

∫ L

0
sin2

(mπx
L

)
dx .

Inserting the form for φ(x), we then find that the An are given by

An =
2

nπc

∫ L

0
φ(x) sin

(nπx
L

)
dx , (26)

=
2

nπc

∫ L/2+δ

L/2−δ
δ sin

(nπx
L

)
dx , (27)

=
2δL

c(nπ)2

[
− cos(nπx/L)

]L/2+δ

L/2−δ
, (28)

=
2δL

c(nπ)2

[
cos

(
nπ
[

1
2 + δ/L

])
− cos

(
nπ
[

1
2 − δ/L

]) ]
. (29)

With this rather cumbersome formula, we have the full solution for u(x, t). Figure 1 shows
the displacement u(x, t) and the velocity ∂u/∂t at a few times after the initial whack.

5 Laplace’s equation in a 60◦ wedge. Consider Laplace’s equation in a circular wedge
with radius 1 in polar coordinates (r, θ), where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π/3. Laplace’s
equation is

∇2u =
1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂2θ

= 0 ,
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Figure 1: A whacked string. The solution u(x, t) for problem 4 at various times t.

and the boundary conditions are

u(r, 0) = u(r, π/3) = 0 ,

and
u(1, θ) = h(θ) .

We also have the condition that u is bounded at r = 0, or that |u(0, θ)| < ∞. Find u(r, θ)
using separation of variables.

Solution. We use separation of variables by proposing that u = f (r)g(θ). Similar to
the disk problem in homework 2, we substitute this form into the governing equation and
multiply by r2/ f g. This yields

r
f
(
r f ′
)′
= −g′′

g
= λ ,

where we have defined a separation constant λ. The equation for g is then

g′′ + λg = 0 .
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The boundary conditions on g(θ) are g(0) = g(π/3) = 0, which follow from the bound-
ary conditions on u(r, θ). As a consequence, we must find oscillatory solutions, and λ > 0.
The general solution for g is

g = A sin
(√

λθ
)
+ B cos

(√
λθ
)

.

The condition that g(0) = 0 implies that B = 0. The condition at θ = π/3 implies that

0 = A sin
(√

λπ/3
)

.

This can only be zero when sin
(√

λπ/3
)
= 0 which occurs when

√
λπ/3 = nπ, where

n is an integer. Thus we find λ = (3n)2, and the θ-modes are

gn = An sin(3nθ) .

Note that we can take n > 0 without loss of generality, because the modes for n < 0 are
identical to the modes for n > 0 (because sin(3θ) = − sin(−3θ)). The equation for f (r)
becomes

r2 f ′′ + r f ′ + 9n2 f = 0 .

We solve this equation by proposing f = Crα. This yields a characteristic equation for α,

α2 = 9n2 which implies α = ±3n .

The solution for f (r) is therefore

f = Cr3n + Dr−3n .

When r → 0, the function Dr−3n diverges to +∞. Thus, this solution violates the condi-
tion that |u(r = 0)| < ∞, and we must have D = 0. Reconstructing the total solution for
u, we have

u(r, θ) =
∞

∑
n=1

Anr3n sin(3nθ) .

We now can apply the condition at r = 1. This implies that

h(θ) =
∞

∑
n=1

An sin(3nθ) .

To find the coefficients An, we project this condition on the modes sin(3mθ) by multiply-
ing by sin(3mθ) and integrating from θ = 0 to θ = π/3. This yields

Am =
6
π

∫ π/3

0
h(θ) sin(3mθ)dθ .
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