Homework 3

Due April 29, 2015.

1 Review of inhomogeneous equations. Give the general solution to the following ODEs:
(a) $y^{\prime \prime}-4 y=\mathrm{e}^{x}$,

$$
\begin{equation*}
y^{\prime \prime}+4 y=\sin (2 x) \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
x^{2} y^{\prime \prime}+2 x y^{\prime}+y=0 \tag{c}
\end{equation*}
$$

$$
\begin{equation*}
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=0 \tag{d}
\end{equation*}
$$

Hint: one of these questions involves resonance and one has a repeated root. In these cases, consider solutions of the form $x \mathrm{e}^{k x}$ or $x^{\beta} \ln x$ (where k can be imaginary).

Solution.

(a) The homogeneous solution to (a) solves $y^{\prime \prime}-4 y=0$ and can be found by plugging in $y_{h}=A \mathrm{e}^{k x}$ into the governing equation. This yields that $k= \pm 2$, and that the homogeneous solution is

$$
y_{h}(x)=A \mathrm{e}^{2 x}+B \mathrm{e}^{-2 x} .
$$

Since the forcing term, e^{x}, does not match any of the homogeneous solutions, it is not resonant. An exponential function is particularly simple in that we can guess a particular solution $y_{p}(x)=C \mathrm{e}^{x}$, plug this into the governing equation, and solve for C. This yields

$$
y_{p}^{\prime \prime}-4 y_{p}=C \mathrm{e}^{x}(1-4)=\mathrm{e}^{x}
$$

This implies that $C=-1 / 3$, and the general solution is

$$
y(x)=y_{h}+y_{p}=A \mathrm{e}^{2 x}+B \mathrm{e}^{-2 e x}-\frac{1}{3} \mathrm{e}^{x} .
$$

(b) The homogeneous solution is

$$
y_{h}(x)=A \sin (2 x)+B \cos (2 x) .
$$

It is apparent that the forcing term takes the form of one of the homogeneous solutions, $\sin (2 x)$. This is called "resonant forcing". First, we use the identity

$$
\mathrm{e}^{i \theta}=\cos (\theta)+i \sin (\theta),
$$

to write the governing equation as

$$
y^{\prime \prime}+4 y=\frac{\mathrm{i}}{2}\left(\mathrm{e}^{-2 \mathrm{i} x}-\mathrm{e}^{2 \mathrm{i} x}\right)
$$

Next, we propose a particular solution of the form $y_{p}=C x \mathrm{e}^{k x}$. We then have

$$
\begin{align*}
& y_{p}=C x \mathrm{e}^{k x} \tag{1}\\
& y_{p}^{\prime}=C \mathrm{e}^{k x}(k x+1) \tag{2}\\
& y_{p}^{\prime \prime}=C \mathrm{e}^{k x}\left(k^{2} x+2 k\right) \tag{3}
\end{align*}
$$

Putting this into the governing equation yields

$$
C x \mathrm{e}^{k x}\left(k^{2}+4\right)+2 k C \mathrm{e}^{k x}=\frac{\mathrm{i}}{2}\left(\mathrm{e}^{-2 \mathrm{i} x}-\mathrm{e}^{2 \mathrm{i} x}\right)
$$

The first term involving $C x \mathrm{e}^{k x}$ can only match the right side if $k^{2}+4=0$, or if $k= \pm 2 \mathrm{i}$. This leaves us with two equations, one for $k=+2 \mathrm{i}$ and one for $k=-2 \mathrm{i}$, which allow us to choose two constants, C_{+}and C_{-}, to match the right hand side. In other words,

$$
4 \mathrm{i} C_{+} \mathrm{e}^{2 \mathrm{i} x}=-\frac{\mathrm{i}}{2} \mathrm{e}^{2 \mathrm{i} x}
$$

and

$$
-4 \mathrm{i} C-\mathrm{e}^{-2 \mathrm{i} x}=\frac{\mathrm{i}}{2} \mathrm{e}^{-2 \mathrm{i} x}
$$

These equations imply that both C_{+}and C_{-}are

$$
C_{+}=C_{-}=-\frac{1}{8}
$$

The particular solution is then

$$
y_{p}=-\frac{1}{8} x\left(\mathrm{e}^{2 \mathrm{i} x}+\mathrm{e}^{-2 \mathrm{i} x}\right)=-\frac{1}{4} x \cos (2 x)
$$

where for the last step we again use Euler's identity.
(c) This is an "equidimensional" equation. To solve this type of equations we propose a solution of the form $y=A x^{\alpha}$. We then have

$$
\begin{align*}
y & =A x^{\alpha} \tag{4}\\
y^{\prime} & =A \alpha x^{\alpha-1} \tag{5}\\
y^{\prime \prime} & =A \alpha(\alpha-1) x^{\alpha-2} . \tag{6}
\end{align*}
$$

Plugging these into the governing equation yields the "characteristic equation" for α,

$$
\alpha^{2}-\alpha+2 \alpha+1=\alpha^{2}+\alpha+1=0 .
$$

We can find the solution using the quadratic equation,

$$
\alpha=\frac{1}{2}(-1 \pm \sqrt{1-4})=-\frac{1}{2} \pm \frac{\mathrm{i} \sqrt{3}}{2} .
$$

Note that the properties of logarithms imply that

$$
x^{1 \beta}=\mathrm{e}^{\mathrm{i} \beta \ln x}=\cos (\beta \ln x)+\mathrm{i} \sin (\beta \ln x) .
$$

So, our two solutions are

$$
y_{1}=A x^{(-1+\mathrm{i} \sqrt{3}) / 2} \quad \text { and } \quad y_{2}=B x^{(-1-\mathrm{i} \sqrt{3}) / 2}
$$

and the general solution is

$$
y=A x^{(-1+\mathrm{i} \sqrt{3}) / 2}+B x^{(-1-\mathrm{i} \sqrt{3}) / 2}=x^{-1 / 2}\left[C \cos \left(\frac{\sqrt{3}}{2} \ln x\right)+D \sin \left(\frac{\sqrt{3}}{2} \ln x\right)\right] .
$$

(d) If we propose a solution of the form $y=A x^{\alpha}$, the characteristic equation for α is

$$
\alpha^{2}-\alpha+3 \alpha+1=(\alpha+1)^{2}=0
$$

This is the case of a repeated root, where both the roots of α are -1 . We thus have only found one solution, $y_{1}=A x^{-1}=A / x$. To find the second solution, we guess a solution of the form

$$
y_{2}=B x^{\beta} \ln x .
$$

We then have

$$
\begin{align*}
& y_{2}=B x^{\beta} \ln x \tag{7}\\
& y_{2}^{\prime}=B \beta x^{\beta-1} \ln x+x^{\beta-1} \tag{8}\\
& y_{2}^{\prime \prime}=B \beta(\beta-1) x^{\beta-2} \ln x+B \beta x^{\beta-2}+B(\beta-1) x^{\beta-2} \tag{9}
\end{align*}
$$

Plugging this into the governing equation yields

$$
\begin{align*}
0 & =B x^{\beta-2} \ln x\left(\beta^{2}-\beta+3 \beta+1\right)+B x^{\beta-2}(2 \beta-1+3) \tag{10}\\
& =B x^{\beta-2} \ln x(\beta+1)^{2}+B x^{\beta-2}(2 \beta+2) \tag{11}
\end{align*}
$$

From this we deduce (as we might have expected) that $\beta=-1$ and $y_{2}=B \ln x / x$. The total solution is then

$$
y=A x^{-1}+B x^{-1} \ln x
$$

2 Fourier sine and cosine series'.

(a) Find the Fourier sine series of

$$
f(x)=\mathrm{e}^{x}
$$

on the interval $0 \leq x \leq L$.
(b) Find the Fourier cosine series of $f(x)$ on the same interval.

Hint: consider the real and imaginary parts of the integral $\int_{0}^{L} \mathrm{e}^{x+\mathrm{i} n \pi x / L} \mathrm{~d} x$.

Solution.

1. The Fourier sine series of a function $f(x)$ on the interval 0 to L is defined as

$$
f_{s}(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

where the coefficients A_{n} are given by

$$
A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) \mathrm{d} x
$$

Using $f(x)=\mathrm{e}^{x}$ yields the integral

$$
A_{n}=\frac{2}{L} \int_{0}^{L} \mathrm{e}^{x} \sin \left(\frac{n \pi x}{L}\right) \mathrm{d} x
$$

One way to evaluate this integral is to note that

$$
\operatorname{Im}\left[\mathrm{e}^{\mathrm{i} n \pi x / L}\right]=\sin \left(\frac{n \pi x}{L}\right)
$$

The operation $\operatorname{Im}[\cdot]$ means that we take the imaginary part of whatever is inside the brackets. Therefore, we can rewrite the integral for A_{n} as

$$
A_{n}=\frac{2}{L} \operatorname{Im}\left[\int_{0}^{L} \mathrm{e}^{x+\mathrm{i} n \pi x / L} \mathrm{~d} x\right]
$$

The integral in the brackets is easily found,

$$
\begin{align*}
\int_{0}^{L} \mathrm{e}^{x+\mathrm{i} n \pi x / L} \mathrm{~d} x & =\left.\frac{1}{1+\mathrm{i} n \pi / L} \mathrm{e}^{x(1+\mathrm{i} n \pi / L)}\right|_{0} ^{L} \tag{12}\\
& =\frac{1}{1+\mathrm{i} n \pi / L}\left(\mathrm{e}^{L} \mathrm{e}^{\mathrm{i} n \pi}-1\right) \tag{13}
\end{align*}
$$

Note that $\mathrm{e}^{\mathrm{i} n \pi}=-1$ when n is odd and 1 when n is even, which means we can write $\mathrm{e}^{\mathrm{i} n \pi}=(-1)^{n}$. Also,

$$
\frac{1}{1+\mathrm{i} n \pi / L}=\frac{L(L-\mathrm{i} n \pi)}{L^{2}+(n \pi)^{2}}
$$

which can be shown by first multiplying top and bottom by L, and then by ($L-$ $\mathrm{i} n \pi)$. We therefore find that

$$
\operatorname{Im}\left[\int_{0}^{L} \mathrm{e}^{x+\mathrm{i} n \pi x / L} \mathrm{~d} x\right]=-\frac{\operatorname{Ln} \pi}{L^{2}+(n \pi)^{2}}\left(\mathrm{e}^{L}(-1)^{n}-1\right)
$$

and that

$$
A_{n}=\frac{2 n \pi}{L^{2}+(n \pi)^{2}}\left(1-\mathrm{e}^{L}(-1)^{n}\right) .
$$

The Fourier sine series of e^{x} on the interval $x=0$ to $x=L$ is therefore

$$
f_{s}(x)=\sum_{n=1}^{\infty} \frac{2 n \pi}{L^{2}+(n \pi)^{2}}\left(1-\mathrm{e}^{L}(-1)^{n}\right) \sin \left(\frac{n \pi x}{L}\right) .
$$

2. The cosine series, fortunately, can be calculated very easily using previous results. The cosine series is defined

$$
f_{c}(x)=\sum_{n=0}^{\infty} B_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

where B_{0} is defined by

$$
B_{0}=\frac{1}{L} \int_{0}^{L} f(x) \mathrm{d} x
$$

and the rest of the B_{n} for $n>0$ are defined by

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right)
$$

Using Euler's identity we can show, similar to part (a), that

$$
B_{n}=\frac{2}{L} \operatorname{Re}\left[\int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right)\right] .
$$

We already calculated the integral; all we have to do is take the real part, instead of the imaginary part. The real part is

$$
\operatorname{Re}\left[\int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right)\right]=\frac{L^{2}}{L^{2}+(n \pi)^{2}}\left(\mathrm{e}^{L}(-1)^{n}-1\right)
$$

Therefore, the B_{n} (for $n>0$ 0re given by

$$
B_{n}=\frac{2 L}{L^{2}+(n \pi)^{2}}\left(\mathrm{e}^{L}(-1)^{n}-1\right) .
$$

For $n=0$, we have

$$
B_{0}=\frac{1}{L} \int_{0}^{L} \mathrm{e}^{x} \mathrm{~d} x=\left.\mathrm{e}^{x}\right|_{0} ^{L}=\frac{1}{L}\left(\mathrm{e}^{L}-1\right)
$$

The Fourier cosine series of $f(x)$ is therefore

$$
f_{c}(x)=\frac{\mathrm{e}^{L}-1}{L}+\sum_{n=0}^{\infty} \frac{2 L}{L^{2}+(n \pi)^{2}}\left(\mathrm{e}^{L}(-1)^{n}-1\right) \cos \left(\frac{n \pi x}{L}\right) .
$$

3 Fourier Series. For a periodic function on the interval $-\pi \leq x \leq \pi$, the Fourier representation is

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)
$$

For the functions in (a) and (b), find the coefficients a_{n} and b_{n}.

$$
\begin{align*}
& \text { (a) } \quad f(x)=\left\{\begin{array}{lll}
0 & \text { for } & x \leq-\pi / 2 \text { and } x \geq \pi / 2 \\
1 & \text { for } & -\pi / 2<x<\pi / 2
\end{array}\right. \tag{14}\\
& \text { (b) } f(x) \tag{15}
\end{align*}
$$

Solution. The coefficients a_{n} and b_{n} are given by the following formulas

$$
\begin{array}{ll}
n=0, & a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{d} x, \\
n>1, & a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) \mathrm{d} x \\
n>1, & b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) \mathrm{d} x . \tag{18}
\end{array}
$$

(a) The coefficient a_{0} is given by

$$
a_{0}=\frac{1}{2 \pi} \int_{-L}^{L} f(x) \mathrm{d} x=\frac{1}{2 \pi} \int_{-\pi / 2}^{\pi / 2} 1 \mathrm{~d} x=\frac{1}{2}
$$

The coefficients a_{n} for $n>1$ are given by

$$
a_{n}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \cos (n x) \mathrm{d} x=\frac{2}{n \pi} \sin \left(\frac{n \pi}{2}\right)=\frac{2}{n \pi}\left\{\begin{array}{cc}
(-1)^{\frac{n-1}{2}} & \text { for } n \text { odd } \\
0 & \text { for } n \text { even } .
\end{array}\right.
$$

The coefficients b_{n} are 0 . We know this to be true because $f(x)$ is an even function around $x=0$; in other words, $f(x)=f(-x)$ for $0<x<\pi$. When $f(x)$ is even, it does not project onto the sine coefficients b_{n}. Conversely, when x is odd, it does not project onto a_{n}. We can also show that the b_{n} are zero in this case by direct computation, since

$$
b_{n}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \sin (n x) \mathrm{d} x=-\left.\frac{1}{n \pi} \cos (n x)\right|_{-\pi / 2} ^{\pi / 2}=0
$$

Substituting $n=2 \pi-1$ (since a_{n} only contributes to the Fourier series when n is odd), the Fourier series representation can be written

$$
f(x)=\frac{1}{2}+\sum_{p=1}^{\infty} \frac{2(-1)^{p-1}}{(2 p-1) \pi} \cos [(2 p-1) x]
$$

(b) The coefficient a_{0} is given by

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{0} x+\pi \mathrm{d} x+\frac{1}{2 \pi} \int_{0}^{\pi} \pi-x \mathrm{~d} x=\frac{1}{\pi}\left[\frac{1}{2} x^{2}+\pi x\right]_{-\pi}^{0}=\frac{1}{2} \pi .
$$

The coefficients a_{n} are

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{0}(x+\pi) \cos (n x) \mathrm{d} x+\frac{1}{\pi} \int_{0}^{\pi}(\pi-x) \cos (n x) \mathrm{d} x .
$$

We can simplify this expression by noting that both integrals are equal to one another. This can be shown by substituting $x^{\prime}=-x$ into the second integral, for example. This substitution implies that $\mathrm{d} x=-\mathrm{d} x$. Using the fact that $\cos (\theta)=\cos (-\theta)$, we then find that

$$
\begin{align*}
I & =\frac{1}{\pi} \int_{0}^{\pi}(\pi-x) \cos (n x) \mathrm{d} x \tag{19}\\
& =\frac{1}{\pi} \int_{0}^{-\pi}\left(\pi+x^{\prime}\right) \cos \left(-n x^{\prime}\right)\left(-\mathrm{d} x^{\prime}\right) \tag{20}\\
& =\frac{1}{\pi} \int_{-\pi}^{0}\left(\pi+x^{\prime}\right) \cos \left(n x^{\prime}\right) \mathrm{d} x^{\prime} \tag{21}
\end{align*}
$$

In the final step, the negative sign incurred by the swapping of limits cancels the negative sign in front of $-\mathrm{d} x^{\prime}$. We can therefore write the expression for a_{n} as a single integral, which can be evaluated using integration by parts. We find

$$
\begin{align*}
a_{n} & =\frac{2}{\pi} \int_{-\pi}^{0}(x+\pi) \cos (n x) \mathrm{d} x, \tag{22}\\
& =\left.\frac{2}{n} \sin (n x)\right|_{-\pi} ^{0}+\left.\frac{2 x}{\pi n} \sin (n x)\right|_{-\pi} ^{0}-\frac{2}{\pi n} \int_{-\pi}^{0} \sin (n x) \mathrm{d} x, \tag{23}\\
& =\frac{2}{\pi n^{2}}(1-\cos (n \pi)) \tag{24}\\
& =\frac{4}{\pi n^{2}} \begin{cases}1 & n \text { odd } \\
0 & n \text { even } .\end{cases} \tag{25}
\end{align*}
$$

The b_{n} are zero, for the same reason in (a). We can show this with direct integration as well. If we introduce $n=2 p-1$, we can write the Fourier series as

$$
f(x)=\frac{1}{2} \pi+\sum_{p=1}^{\infty} \frac{4}{\pi(2 p-1)^{2}} \cos [(2 p-1) x]
$$

4 The whacked wave equation. Consider the wave equation,

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

with fixed ends, so that

$$
u(0, t)=u(L, t)=0
$$

and two initial conditions: zero initial displacement,

$$
u(x, 0)=0,
$$

and with an initial impulsive whacking velocity of

$$
\frac{\partial u}{\partial t}(x, 0)=\left\{\begin{array}{lc}
\delta & \text { for } \quad L / 2-\delta \leq x \leq L / 2+\delta \\
0 & \text { otherwise }
\end{array}\right.
$$

where $0<\delta<L / 2$. Find $u(x, t)$ using separation of variables.
Solution. We use separation of variables by proposing $u(x, t)=f(x) g(t)$. Plugging this form into the governing equation and multiplying by $1 / c^{2} f g$ yields

$$
\frac{g^{\prime \prime}}{c^{2} g}=\frac{f^{\prime \prime}}{f} .
$$

Applying the usual argument that the groupings to the right and left of the equals sign can only equal each other if they are each separately equal to a constant, we obtain the two ODE's,

$$
f^{\prime \prime}+\lambda f=0
$$

and

$$
g^{\prime \prime}+c^{2} \lambda g=0
$$

where we have defined the separation constant λ. The spatial boundary conditions on $u(x, t)$ imply that $f(0)=f(L)=0$. These homogeneous boundary conditions on f imply that the f-equation provides the eigenvalue problem which determines λ. Assuming that $\lambda>0$, which must be true for f to have non-trivial solutions, the solutions to the f-equation are

$$
f=A \sin (\sqrt{\lambda} x)+B \cos (\sqrt{\lambda} x) .
$$

The condition that $f(0)=0$ implies that $B=0$. The condition that $f(L)=0$ implies then that

$$
0=A \sin (\sqrt{\lambda} L)
$$

If $A \neq 0$, the boundary condition can only be satisfied if $\sin (\sqrt{\lambda} L)=0$, which occurs when

$$
\sqrt{\lambda} L=n \pi, \quad \text { which implies that } \quad \lambda=\left(\frac{n \pi}{L}\right)^{2} .
$$

The solutions to the f-equation are therefore

$$
f_{n}=A_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Correspondingly, the solutions to the g-equation are

$$
g=C \sin \left(\frac{n \pi c t}{L}\right)+D \cos \left(\frac{n \pi c t}{L}\right) .
$$

Since $u(x, t=0)=0$, we must have $D=0$. The general solution for $u(x, t)$ is then

$$
u(x, t)=\sum_{n=1} A_{n} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi c t}{L}\right)
$$

Note that this means

$$
\frac{\partial u}{\partial t}=\sum_{n=1} \frac{A_{n} n \pi c}{L} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi c t}{L}\right) .
$$

The coefficients A_{n} are determined by the initial condition, which implies that

$$
\frac{\partial u}{\partial t}(x, t=0)=\phi(x)=\sum_{n=1}^{\infty} \frac{A_{n} n \pi c}{L} \sin \left(\frac{n \pi x}{L}\right),
$$

where $\phi(x)$ is

$$
\phi(x)=\left\{\begin{array}{lc}
\delta & \text { for } \quad L / 2-\delta \leq x \leq L / 2+\delta \\
0 & \text { otherwise }
\end{array}\right.
$$

We obtain an expression for the A_{n} by multiplying the expression for $\phi(x)$ by $\sin (m \pi x / L)$ and integrating from $x=0$ to $x=L$. This yields the expression

$$
\int_{0}^{L} \phi(x) \sin \left(\frac{m \pi x}{L}\right) \mathrm{d} x=\frac{A_{m} m \pi c}{L} \int_{0}^{L} \sin ^{2}\left(\frac{m \pi x}{L}\right) \mathrm{d} x .
$$

Inserting the form for $\phi(x)$, we then find that the A_{n} are given by

$$
\begin{align*}
A_{n} & =\frac{2}{n \pi c} \int_{0}^{L} \phi(x) \sin \left(\frac{n \pi x}{L}\right) \mathrm{d} x \tag{26}\\
& =\frac{2}{n \pi c} \int_{L / 2-\delta}^{L / 2+\delta} \delta \sin \left(\frac{n \pi x}{L}\right) \mathrm{d} x \tag{27}\\
& =\frac{2 \delta L}{c(n \pi)^{2}}[-\cos (n \pi x / L)]_{L / 2-\delta}^{L / 2+\delta} \tag{28}\\
& =\frac{2 \delta L}{c(n \pi)^{2}}\left[\cos \left(n \pi\left[\frac{1}{2}+\delta / L\right]\right)-\cos \left(n \pi\left[\frac{1}{2}-\delta / L\right]\right)\right] \tag{29}
\end{align*}
$$

With this rather cumbersome formula, we have the full solution for $u(x, t)$. Figure 1 shows the displacement $u(x, t)$ and the velocity $\partial u / \partial t$ at a few times after the initial whack.

5 Laplace's equation in a 60° wedge. Consider Laplace's equation in a circular wedge with radius 1 in polar coordinates (r, θ), where $0 \leq r \leq 1$ and $0 \leq \theta \leq \pi / 3$. Laplace's equation is

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial^{2} \theta}=0
$$

Figure 1: A whacked string. The solution $u(x, t)$ for problem 4 at various times t.
and the boundary conditions are

$$
u(r, 0)=u(r, \pi / 3)=0
$$

and

$$
u(1, \theta)=h(\theta)
$$

We also have the condition that u is bounded at $r=0$, or that $|u(0, \theta)|<\infty$. Find $u(r, \theta)$ using separation of variables.

Solution. We use separation of variables by proposing that $u=f(r) g(\theta)$. Similar to the disk problem in homework 2, we substitute this form into the governing equation and multiply by $r^{2} / f g$. This yields

$$
\frac{r}{f}\left(r f^{\prime}\right)^{\prime}=-\frac{g^{\prime \prime}}{g}=\lambda
$$

where we have defined a separation constant λ. The equation for g is then

$$
g^{\prime \prime}+\lambda g=0
$$

The boundary conditions on $g(\theta)$ are $g(0)=g(\pi / 3)=0$, which follow from the boundary conditions on $u(r, \theta)$. As a consequence, we must find oscillatory solutions, and $\lambda>0$. The general solution for g is

$$
g=A \sin (\sqrt{\lambda} \theta)+B \cos (\sqrt{\lambda} \theta)
$$

The condition that $g(0)=0$ implies that $B=0$. The condition at $\theta=\pi / 3$ implies that

$$
0=A \sin (\sqrt{\lambda} \pi / 3)
$$

This can only be zero when $\sin (\sqrt{\lambda} \pi / 3)=0$ which occurs when $\sqrt{\lambda} \pi / 3=n \pi$, where n is an integer. Thus we find $\lambda=(3 n)^{2}$, and the θ-modes are

$$
g_{n}=A_{n} \sin (3 n \theta)
$$

Note that we can take $n>0$ without loss of generality, because the modes for $n<0$ are identical to the modes for $n>0$ (because $\sin (3 \theta)=-\sin (-3 \theta)$). The equation for $f(r)$ becomes

$$
r^{2} f^{\prime \prime}+r f^{\prime}+9 n^{2} f=0
$$

We solve this equation by proposing $f=C r^{\alpha}$. This yields a characteristic equation for α,

$$
\alpha^{2}=9 n^{2} \quad \text { which implies } \quad \alpha= \pm 3 n
$$

The solution for $f(r)$ is therefore

$$
f=C r^{3 n}+D r^{-3 n}
$$

When $r \rightarrow 0$, the function $D r^{-3 n}$ diverges to $+\infty$. Thus, this solution violates the condition that $|u(r=0)|<\infty$, and we must have $D=0$. Reconstructing the total solution for u, we have

$$
u(r, \theta)=\sum_{n=1}^{\infty} A_{n} r^{3 n} \sin (3 n \theta)
$$

We now can apply the condition at $r=1$. This implies that

$$
h(\theta)=\sum_{n=1}^{\infty} A_{n} \sin (3 n \theta)
$$

To find the coefficients A_{n}, we project this condition on the modes $\sin (3 m \theta)$ by multiplying by $\sin (3 m \theta)$ and integrating from $\theta=0$ to $\theta=\pi / 3$. This yields

$$
A_{m}=\frac{6}{\pi} \int_{0}^{\pi / 3} h(\theta) \sin (3 m \theta) \mathrm{d} \theta
$$

