MAE105 Introduction to Mathematical Physics Spring Quarter 2015
http://web.eng.ucsd.edu/~sgls/MAE105_2015/

Homework 3

Due April 29, 2015.

1 Review of inhomogeneous equations. Give the general solution to the following
ODEs:

(a) y'—4y=e',

(b) y" + 4y = sin(2x),
(c) Xy +2xy' +y =0,
(d) Xy’ +3xy +y=0.

Hint: one of these questions involves resonance and one has a repeated root. In these cases, consider
solutions of the form x e* or xP In x (where k can be imaginary).

Solution.

(a) The homogeneous solution to (a) solves y”” — 4y = 0 and can be found by plugging
in y, = Aef into the governing equation. This yields that k = +2, and that the
homogeneous solution is

y(x) = Ae®® 4 Be ¥,

Since the forcing term, e*, does not match any of the homogeneous solutions, it is
not resonant. An exponential function is particularly simple in that we can guess a
particular solution y,(x) = Ce*, plug this into the governing equation, and solve for
C. This yields

v — 4y, :ceX(1—4> =",

This implies that C = —1/3, and the general solution is
y(x) = yp +yp = Ae* + Be % — le*.
(b) The homogeneous solution is
yn(x) = Asin(2x) + B cos(2x) .

It is apparent that the forcing term takes the form of one of the homogeneous solu-
tions, sin(2x). This is called “resonant forcing”. First, we use the identity

e’ = cos() +isin(6),



to write the governing equation as

y' + 4y = %(e—ﬁx B eZix) .

Next, we propose a particular solution of the form y, = Cxet*. We then have

Yp = Cxe*, (1)
vy = Cek™ (kx n 1) ) )
Y = Ce¥ (kzx + 2k) . 3)

Putting this into the governing equation yields
kx (1.2 kx __ l —2ix _ 2ix
Cxe (k + 4) +2kCe™ = > (e e )

The first term involving Cxe®* can only match the right side if k> +4 = 0, or if k = 42i.
This leaves us with two equations, one for k = 4-2i and one for k = —2i, which allow
us to choose two constants, C; and C_, to match the right hand side. In other words,

4iC+ eZ1x - _ %e21x ,

and

—4iC,e_21x — % —2ix )

These equations imply that both C and C_ are
Cy=C_=-%.
The particular solution is then
Yy = _%x<e2ix 4 e—21x> — —lycos(2x),

where for the last step we again use Euler’s identity.

This is an “equidimensional” equation. To solve this type of equations we propose a
solution of the form y = Ax*. We then have

y = Ax", 4)
]// — Aoéx‘xfl , (5)
y' = Aa(a —1)x%2, (6)

Plugging these into the governing equation yields the “characteristic equation” for «,

az—(x+2(x+1:(x2+a+1:0.



(d)

We can find the solution using the quadratic equation,

az%(—lix/ﬁ):—%i%g.

Note that the properties of logarithms imply that
xf = ePIn% — cos (BInx) +isin (Blnx) .
So, our two solutions are

Y1 = Ax(—14iv3)/2 and Yo = Bx(—1—iﬁ)/z,

and the general solution is

y = Ax(—1+iv3)/2 + By(~1-1V3)/2 _ ,.~1/2

C cos <§lnx) + Dsin <§lnx>] .

If we propose a solution of the form y = Ax*, the characteristic equation for « is

2
W —a+3a+1= (oc+1> =0.

This is the case of a repeated root, where both the roots of a are -1. We thus have
only found one solution, y; = Ax~! = A/x. To find the second solution, we guess a
solution of the form

Yo = BxPlnx.
We then have
v, = BxPInx, (7)
Yo = BBxP MInx + xP 1, (8)
ys = BB(B—1)xP2Inx + BBxP 2+ B(p— 1)xP 2. €)

Plugging this into the governing equation yields

0= By 2Inx (2~ p+3p+1) +BrP2(2—1+3) (10)
2
= B 2Inx(p+1) +BrP2(28+2). (11)
From this we deduce (as we might have expected) that 8 = —1 and y» = Blnx/x.

The total solution is then
y=Ax"'+Bx llnx.



2 Fourier sine and cosine series’.

(a) Find the Fourier sine series of
f(x) =¢",

on the interval 0 < x < L.
(b) Find the Fourier cosine series of f(x) on the same interval.
Hint: consider the real and imaginary parts of the integral fOL e¥Hnx/L gy,

Solution.

1. The Fourier sine series of a function f(x) on the interval 0 to L is defined as
= . (NTX
fs(x) = Z A, sin <_L ) ,
n=1
where the coefficients A, are given by

2 (L . (NTTX
Ay = Z/o f(x)sin <T> dx.
Using f(x) = e* yields the integral
2 L /nmx
An_Z/o e sm<T> dx.
One way to evaluate this integral is to note that

Im [ei”m‘/L] = sin (n_z[x) .

The operation Im[-] means that we take the imaginary part of whatever is inside the
brackets. Therefore, we can rewrite the integral for A, as

Ai’l = %Im [/L ex+in7‘(X/L dx] .
0

The integral in the brackets is easily found,

L . 1 . L
x+inmx/L _ x(1+inmt/L) 12
/0 © dx 1+in7t/Le 0’ (12)
1 L _inrm

= — — 1) . 13

1+inmt/L (e © (13)

Note that " = —1 when # is odd and 1 when 7 is even, which means we can write
e = (—1)". Also,

1 L(L—inm)

1+int/L~ L2+ (nm)2’
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which can be shown by first multiplying top and bottom by L, and then by (L —
in7t). We therefore find that

L . Lnm
x+inmx/L o Le_qyn _
Im[/o e dx] = T2 (nn)? (e (—1) 1),

Ap = #(:7[)2(1 - eL(—l)”> .

The Fourier sine series of e* on the interval x = 0 to x = L is therefore

and that

fs(x) = i #(:7[)2@ — eL(—l)"> sin <n_7gx> )

n=1

. The cosine series, fortunately, can be calculated very easily using previous results.
The cosine series is defined

fe(x) = i B, cos (%) ,

n=0
where B is defined by

By = %/()Lf(x)dx,

and the rest of the B, for n > 0 are defined by
2 (L nmx
B, = Z/o f(x) cos (T) .

Using Euler’s identity we can show, similar to part (a), that

) s (572)]

We already calculated the integral; all we have to do is take the real part, instead of
the imaginary part. The real part is

/OLf(x) cos (%) ] =17 +L(2nn—)2 (eL(—l)" — 1) :

Therefore, the B, (for n > Oare given by

B, = ﬁ(e%—l)” - 1) .

L)

2
Bn = ZRe

Re

For n = 0, we have
1 L
BO:Z/() e*dx =e*

The Fourier cosine series of f(x) is therefore

fe(x) = eLL— ! +§#€1n)2<&(_1)n — 1) cos (n_z[x> .




3 Fourier Series. For a periodic function on the interval —r < x < 7, the Fourier

representation is
[e)

f(x) =ag+ ) aycos(nx) + b, sin(nx).

n=1

For the functions in (a) and (b), find the coefficients a,, and b,,.

B 0 for x<-—-mn/2 and x> 7t/2
(a) f(x) - { 1 for —n/2<x<7/2 (14)
B X+ 7T for x<0
b)  fx) B { T—X for x>0 (15)
Solution. The coefficients a, and b, are given by the following formulas
1 7T
n=0, aozﬁ/_nf(x)dx, (16)
1 7T
n>1, ay = —/ f(x)cos (nx) dx, (17)
TJ—m
1 7T
n>1, by, = %/ f(x)sin (nx) dx. (18)
-7

(a) The coefficient ay is given by

L d ! mld 1
ao—E/Lf(x)x—E/n/z X=5.

The coefficients a, for n > 1 are given by

1 /2 2 nri 2 (—1)% for n odd
— d - —  gqj RN [ —
= /_n/z cos (nx) dx n o ( 2 ) nrm { 0 for n even.

The coefficients b, are 0. We know this to be true because f(x) is an even function
around x = 0; in other words, f(x) = f(—x) for 0 < x < 7. When f(x) is even, it does
not project onto the sine coefficients b,. Conversely, when x is odd, it does not project
onto a,. We can also show that the b, are zero in this case by direct computation, since

1 [m/2 1 /2
b, = —/ sin (nx) dx = ——cos(nx)’ = 0.

Substituting n = 27t — 1 (since a, only contributes to the Fourier series when 7 is
odd), the Fourier series representation can be written

© _ -1
f =3+ % 20

= 2p-1)n cos [(Zp — 1)x] .



(b) The coefficient ag is given by

aozi/o x+7tdx—|—i/n7t—xdx:l[lx2+7tx] =17,
27 ) n 27 Jo L2 2

The coefficients a,, are

= —/ x 4 77) cos(nx) dx + — / — x) cos(nx) dx.
We can simplify this expression by noting that both integrals are equal to one another.
This can be shown by substituting x’ = —x into the second integral, for example. This
substitution implies that dx = — dx. Using the fact that cos() = cos(—0), we then
find that
1 7T
1= —/ (7t — x) cos(nx) dx, (19)
7T Jo
L / /
== (7t + x") cos(—nx")(—dx’), (20)
0
= —/ (7t + x") cos(nx’) dx’. (21)
TJ-m

In the final step, the negative sign incurred by the swapping of limits cancels the
negative sign in front of —dx’. We can therefore write the expression for a, as a
single integral, which can be evaluated using integration by parts. We find

Ay = %/_On (x + 77) cos(nx) dx, (22)
0 0 0

= %sin(nx) ‘ o + % sin(nx)‘_n — % . sin(nx) dx, (23)

= 7'(22 (1 —cos(nm)), (24)

T

The b, are zero, for the same reason in (a). We can show this with direct integration
as well. If we introduce n = 2p — 1, we can write the Fourier series as

f(x)=3m+ 2 ﬁcos [(Zp — 1)x} :

4 The whacked wave equation. Consider the wave equation,

’u  ,0%u
oV
with fixed ends, so that
u(0,t) =u(L,t) =0,



and two initial conditions: zero initial displacement,
u(x,0) =0,
and with an initial impulsive whacking velocity of

a—u(xO) _ 0 for L/2—-6<x<L/2+9,
ot "’ N 0 otherwise,

where 0 < 6 < L/2. Find u(x, t) using separation of variables.

Solution. We use separation of variables by proposing u(x,t) = f(x)g(t). Plugging
this form into the governing equation and multiplying by 1/c?fg yields

g// f//

g f

Applying the usual argument that the groupings to the right and left of the equals sign
can only equal each other if they are each separately equal to a constant, we obtain the
two ODE’s,

f// _|_ )\ f — 0 ,

and
g// + CZ/\g _ 0,

where we have defined the separation constant A. The spatial boundary conditions on
u(x,t) imply that f(0) = f(L) = 0. These homogeneous boundary conditions on f imply
that the f-equation provides the eigenvalue problem which determines A. Assuming
that A > 0, which must be true for f to have non-trivial solutions, the solutions to the

f-equation are
f = Asin (\/Xx) + Bcos (\/Xx) :
The condition that f(0) = 0 implies that B = 0. The condition that f(L) = 0 implies then

that
0= Asin (\/XL> .

If A # 0, the boundary condition can only be satisfied if sin (ﬁL) = 0, which occurs
when )
VAL =nm,  which implies that A= (E> .

The solutions to the f-equation are therefore

nritx

fn = Aysin <T> .

Correspondingly, the solutions to the g-equation are

. [ nrtct nrct
g = Csin (T) +Dcos( T > .
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Since u(x,t = 0) = 0, we must have D = 0. The general solution for u(x, t) is then

nrx nrct
u(x,t) =) Aysin(—— sin< ) :
n; " ( L ) L

Note that this means

a_u B Z Ay nre sin <n7tx> cos nrct
of = L L L )’

The coefficients A, are determined by the initial condition, which implies that

ou N o« Aynme . /nmx
Sr(vt=0) = ¢(x) = ¥ P sin (=)
where ¢(x) is
B ) for L/2—-6<x<L/2+9,
ox) = { 0 otherwise,

We obtain an expression for the A, by multiplying the expression for ¢(x) by sin (m7mx /L)
and integrating from x = 0 to x = L. This yields the expression

[ otysin (MY = AnE [ g (1 g

Inserting the form for ¢(x), we then find that the A, are given by

Av= 2 OLq><x) sin (") dx, (26)
- LZ 2_*;55&1 (") ax, 27)
= |- costuma/n)] 28)
_ C(Zn‘s_?fy [cos (n [§+6/L]) = cos (nm [5 —8/L]) ] . (29)

With this rather cumbersome formula, we have the full solution for u(x, t). Figure 1 shows
the displacement u(x, t) and the velocity du /dt at a few times after the initial whack.

5 Laplace’s equation in a 60° wedge. Consider Laplace’s equation in a circular wedge
with radius 1 in polar coordinates (r,0), where 0 < r < 1and 0 < 0 < 7r/3. Laplace’s
equation is

10 ( du 1 0%u
2 _ - — _— —_— =
Vi = ror (rar) T2 0.
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Figure 1: A whacked string. The solution u(x, t) for problem 4 at various times .

and the boundary conditions are
u(r,0) =u(r,m/3) =0,
and
u(1,0) =h(0).

We also have the condition that u is bounded at r = 0, or that |u(0,0)| < co. Find u(r, )
using separation of variables.

Solution. We use separation of variables by proposing that u = f(r)g(6). Similar to
the disk problem in homework 2, we substitute this form into the governing equation and
multiply by 72/ fg. This yields

Ty 8
Fof) =5 =,

where we have defined a separation constant A. The equation for ¢ is then

¢ +1Ag=0.
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The boundary conditions on g(#) are g(0) = g(7t/3) = 0, which follow from the bound-
ary conditions on u(r, 0). As a consequence, we must find oscillatory solutions, and A > 0.
The general solution for g is

g = Asin (\/KG) + Bcos (\/XO) :
The condition that g(0) = 0 implies that B = 0. The condition at 6 = 7r/3 implies that

0= Asin (\/XT[/?)) .

1S can on € Zero when sin 7T = U winich occurs whnen 7T = njt, where
Thi ly b hen sin (v/A7r/3) = 0 which hen /A7t /3 h

n is an integer. Thus we find A = (31)?, and the #-modes are
en = Apsin(3n0) .

Note that we can take n > 0 without loss of generality, because the modes for n < 0 are
identical to the modes for n > 0 (because sin(30) = — sin(—36)). The equation for f(r)
becomes

2"+ rf +9n?f =0.
We solve this equation by proposing f = Cr*. This yields a characteristic equation for «,
a? = 9n? which implies x = +3n.
The solution for f(r) is therefore

f=Cr¥ 4 Dr3m,

When r — 0, the function Dr—3" diverges to +co. Thus, this solution violates the condi-
tion that |u(r = 0)| < oo, and we must have D = 0. Reconstructing the total solution for
u, we have

u(r,0) = Y Aur"sin(3nf).

n=1

We now can apply the condition at 7 = 1. This implies that
h(0) = ) Aysin(3n6).
n=1

To find the coefficients A,, we project this condition on the modes sin(3m6) by multiply-
ing by sin(3m#) and integrating from 6 = 0 to 6 = /3. This yields

6 /3
A =2 / 1(6) sin(3m6) df .
7T JOo
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