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Homework 4

Due May 13, 2015.

1 Heat equation in a square. Solve the heat equation for u(x, y, t) in the square 0 <
x < L, 0 < y < L. On the boundaries, assume the normal derivative vanishes, that is
∂u/∂n = n̂ · ∇u = 0 (where n̂ is a normal vector to the boundary pointing out of the
domain), which implies

∂u
∂x

= 0 at x = 0, L ,

and
∂u
∂y

= 0 at y = 0, L .

Take a general initial condition u(x, y, t = 0) = φ(x, y).

Solution. The heat equation is

∂u
∂t

= k∇2u = k
(

∂2u
∂x2 +

∂2u
∂y2

)
.

With the given initial and boundary conditions, we can solve the heat equation using
separation of variables. We first propose u = S(x, y)T(t) and insert this into the heat
equation. After dividing by kST, we obtain

T′

kT
=
∇2S

S
= −λ ,

where we have indicated that, because either side is a functions of t or (x, y), but not
both, the only way they can be equal is if they are both equal to a constant. We denote
this constant “−λ” so the t-equation yields exponentially decreasing solutions. The t-
equation is

T′ + kλT = 0 ,

and the solution is
T = Ae−kλt .

We turn to the equation in (x, y), which is

∇2S + λS = 0 .

We separate variables again by proposing S(x, y) = f (x)g(y). and dividing by f (x)g(y).
This yields

f ′′

f
+ λ = −g′′

g
= µ ,
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where we have noted the existence of a second separation constant, µ, which arises for
the same reason as the first. Note that the boundary conditions on u imply that

f ′(0) = f ′(L) = 0 , and g′(0) = g′(L) = 0 .

The equation for g(y) is
g′′ + µg = 0 .

This equation has sine and cosine solutions; however, the only solution that can satisfy
the condition g′(0) = 0 is cosine; therefore

g = B cos (
√

µy) .

Applying the condition g′(L) = 0 implies that µ must be µn = (nπ/L)2, where n is an
integer. The solution for g(y) is therefore

g = Bn cos
(nπy

L

)
.

We move on to the x-equation, which is

f ′′ + (λ− µn) f = 0 .

Remember that we found µn in the equation for g. We leave it as µn here to save some
effort in rewriting it. As for g(y), the only solution for f (x) that satisfies f ′(0) = 0 is

f = C cos
(√

λ− µnx
)

.

Then, the condition that f ′(L) = 0 implies that the combination λ− µn must be equal to

λ− µn =
(mπ

L

)2
,

where m is a second, different integer from n. This further implies that

λmn = µn +
(mπ

L

)2
=
(nπ

L

)2
+
(mπ

L

)2
,

and that the solution for f (x) is

f (x) = Cm cos
(mπx

L

)
.

We can thus construct the total solution for u(x, y),

u(x, y, t) =
∞

∑
n=0

∞

∑
m=0

Amn cos
(mπx

L

)
cos

(nπy
L

)
e−kλmnt ,

where λmn =
(nπ

L
)2

+
(mπ

L
)2. We apply the initial condition to determine the constant

Amn. Taking t = 0 in our expression for u(x, y, t), this implies

φ(x, y) =
∞

∑
n=0

∞

∑
m=0

Amn cos
(mπx

L

)
cos

(nπy
L

)
.
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The above expression is an infinite sum over two indicies n and m. We isolate the x-index
by multiplying one of the spatial modes, which can be written

cos
( pπx

L

)
.

Multiplying by this and integrating over x gives

∫ L

0
φ cos

( pπx
L

)
dx =

[
∞

∑
n=0

Apn cos
(nπy

L

) ] ∫ L

0
cos2

( pπx
L

)
dx .

We now isolate the y-index by multilplying by a y-mode, which for this problem is iden-
tical to the x-modes. We write this mode as cos(qπy/L). So, multiplying by cos(qπy/L)
and integrating over y yields

∫ L

0

∫ L

0
φ cos

( pπx
L

)
cos

(qπy
L

)
dx dy = Apq

[ ∫ L

0
cos2

(qπy
L

)
dy

][ ∫ L

0
cos2

( pπy
L

)
dx

]
.

This is a general expression for Apq, and solves the problem. We can go a step further,
however, because we can evaluate the integrals. When p > 0 and q > 0 each integral is
equal to L/2, and thus their product is L2/4. When p = 0 but q > 0, or when q = 0 and
p > 0, one of the integrals is L and thus their product is L2/2. Finally, when p = q = 0,
both integrals are L and their product is L2. The general solution to the heat equation in a
square with the given boundary conditions is therefore

u(x, y, t) =
∞

∑
n=0

∞

∑
m=0

Amn cos
(mπx

L

)
cos

(nπy
L

)
exp

[
− k
[ (nπ

L
)2

+
(mπ

L
)2
]]

,

where the Amn are given by

Amn =
∫ L

0

∫ L

0
φ cos

(mπx
L

)
cos

(nπy
L

)
dx dy


4
L2 when n > 0 , m > 0
2
L2 when

(
n = 0 , m > 0

)
or
(

m = 0 , n > 0
)

1
L2 when n = m = 0 .

2 Wave equation in a rectangle. The wave equation in Cartesian coordinates is

∂2u
∂t2 = c2

(
∂2u
∂x2 +

∂2u
∂y2

)
.

We consider solving this equation in a rectangular domain, where 0 < x < L and 0 < y <
H. On the boundaries we use the condition u = 0, which implies

u(0, y, t) = u(L, y, t) = u(x, 0, t) = u(x, H, t) = 0 .

Proceeding as in class, find the solution satisfying the initial condition

u(x, y, 0) = x(L− x) y(H − y),
∂u
∂t

(x, y, 0) = 0 .

3



Solution. The procedure for the wave equation is essentially identical to the heat equa-
tion, except that the t-equation has oscillatory solutions rather than exponentially decay-
ing ones. We begin by separating variables with u = T(t)S(x, y), inserting this into the
wave equation, dividing by c2ST, and introducing a separation constant. Going through
the motions, we find

T′′

c2T
=
∇2S

S
= −κ2 .

Above we have defined the separation constant suggestively as κ2. Of course, we can
use whatever form for the separation constant that we like. κ2 seems like a nice choice,
because then the solution to the T equation is

T = A cos (cκt) .

In the above we have eliminated the other solution, sin(cκt), because it cannot satisfy the
initial condition ∂u/∂t = 0 at t = 0. The S(x, y) equation is

∇2S + κ2S = 0 .

The procedure for S(x, y) is identical to that for the heat equation, so we move more
quickly through this solution. We separate variables by proposing S(x, y) = f (x)g(y),
inserting it into the governing equation, dividing by f g, and identifying a separation
constant, which we define λ2. This implies

f ′′

f
+ κ2 = −g′′

g
= λ2 .

The boundary conditions on f and g are

f (0) = f (L) = g(0) = g(H) = 0 .

The y-equation is g′′+λ2g = 0, and the boundary conditions imply that the eigenfunction
solutions are g = Bn sin(nπy/H) and that λ = nπ/H. The x-equation is

f ′′ +
(

κ2 − λ2
)

f = 0 .

Similar to the y-equation, the solutions satisfying both boundary conditions have the form
f (x) = Cm sin(mπx/L), and that

κ2 − λ2 =
(nπ

H

)2
which implies κmn =

√(mπ
L
)2

+
(nπ

H
)2 .

The total solution for u(x, y, t) can then be written

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

Amn sin
(mπx

L

)
sin
(nπy

H

)
cos (cκmnt) ,

where
κmn =

√(mπ
L
)2

+
(nπ

H
)2 .
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To find the coefficients Amn we apply the initial condition, which implies

x(L− x) y(H − y) =
∞

∑
n=1

∞

∑
m=1

Amn sin
(mπx

L

)
sin
(nπy

H

)
As before, we isolate the coefficients by multiplying by a spatial mode and integrating.
We take a more accelerated route than in the discussion for Problem 1 by multiplying by

sin
( pπx

L

)
sin
(qπy

H

)
and integrating over both x and y. This yields∫ H

0

∫ L

0
x(L− x) y(H − y) sin

( pπx
L

)
sin
(qπy

H

)
dx dy

= Apq

[ ∫ H

0
sin2

(qπy
H

)
dy

][ ∫ L

0
sin2

( pπx
L

)
dx

]
.

Note that we do not have the cases p = 0 or q = 0 as in the heat equation. Also note that
the integral on the left side can be performed over x and y separately, or in other words,∫ H

0

∫ L

0
x(L− x) y(H − y) sin

( pπx
L

)
sin
(qπy

H

)
dx dy

=

[ ∫ H

0
y(H − y) sin

(qπy
H

)
dy

][ ∫ L

0
x(L− x) sin

( pπx
L

)
dx

]
.

Therefore the general form for Apq is

Apq =
4

HL

[ ∫ H

0
y(H − y) sin

(qπy
H

)
dy

][ ∫ L

0
x(L− x) sin

( pπx
L

)
dx

]
.

Now we calculate the y-integral. We use integration by parts, where in terms of the rule∫
v dw = wv−

∫
w dv we define

v = y(H − y) , w = − H
qπ

cos
(qπy

H

)
,

dv = H − 1
2 y , dw = sin

(qπy
H

)
.

Notice that v = y(H − y) vanishes at both 0 and H, and therefore the term vw term does
not contribute to the integration by parts. Therefore,∫ H

0
y(H − y) sin

(qπy
H

)
dy = −

∫
v dw =

∫ H

0

H
qπ

(
H − 1

2 y
)

cos
(qπy

H

)
dy .
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We iterate again with

v = H − 1
2 y , w =

(
H
qπ

)2

sin
(qπy

H

)
,

dv = −1
2 , dw =

H
qπ

cos
(qπy

H

)
.

Notice that this time, w vanishes at 0 and H and again the term vw does not contribute to
the integral. We thus get∫ H

0

H
qπ

(
H − 1

2 y
)

cos
(qπy

H

)
dy =

1
2

∫ H

0

(
H
qπ

)2

sin
(qπy

H

)
dy ,

= −1
2

(
H
qπ

)3

cos
(qπy

H

) ∣∣∣H
0

,

=
1
2

(
H
qπ

)3 (
1− cos(qπ)

)
.

The x-integral is exactly the same with H replaced by L. Therefore∫ L

0
x(L− x) sin

( pπx
L

)
dx =

1
2

(
L

pπ

)3 (
1− cos(pπ)

)
.

The general solution for u(x, y, t) can therefore be written

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

Amn sin
(mπx

L

)
sin
(nπy

H

)
cos (cκmnt) ,

where
κmn =

√(nπ
H
)2

+
(nπ

H
)2 .

and

Amn =
(HL)2

(mnπ2)3

(
1− cos(mπ)

)(
1− cos(nπ)

)
.

It is possible to simplify this expression further by noting that 1− cos(mπ) is either 0 or
2, but we leave it in this form here, which is perfectly valid.

3 Wave equation on a circular membrane. Consider the wave equation on a circular
membrane of radius a. The wave equation in polar coordinates is,

∂2u
∂t2 = c2

[
1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2

]
.

Use the boundary condition ∂u/∂n = 0 on the boundaries, which implies

∂u
∂r

= 0 at r = a .

Answer the following:
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1. Use separation of variables to derive three equations, one depending on t, one de-
pending on r, and one depending on θ. Write down the solution to the t-dependent
equation and the θ-dependent equation.

2. Your r-dependent equation will take the form

r2 d2 f
dr2 + r

d f
dr

+
(

λ2r2 − n2
)

f = 0 ,

where λ is an eigenvalue and n is an integer. If we introduce the substitution z = λr
and divide by z2, we obtain Bessel’s equation from class. The solution bounded at
r = 0 is therefore f (r) = AJn(λr), where A is a constant and Jn is the Bessel function
of the first kind. The eigenvalues λmn are determined by the boundary condition at
r = a and requires finding the zeros of the Bessel functions (or the derivatives of the
Bessel functions). For now, don’t worry about finding the λmn.

Now, rewrite Bessel’s equation in Sturm–Liouville form and, using the results of
Sturm-Liouville theory, derive the orthogonality relation for the functions Jn(λmnr)
over the interval (0, a).

3. Using the orthogonality relation for the functions Jn(λa) over (0, a), write the gen-
eral solution to the wave equation when the initial conditions are

∂u
∂t

(r, θ, t = 0) = 0 , and u(r, θ, t = 0) = φ(r, θ) .

4. Take n = 1 in Bessel’s equation and change variable to x, where x = r/a. Write
down the transformed version of Bessel’s equation and the corresponding Rayleigh
quotient (notice that the boundary terms vanish from the Rayleigh quotient, leaving
only terms that involve integrals).

5. Now consider the test function F(x) = 2x − x2. First, taking into account that
x = r/a, confirm that F(x) satisfies the condition on the x-dependent solution f (x).
Next, use the Rayleigh quotient for Bessel’s equation to generate an estimate for the
first zero of J′1(x), which corresponds to λ1a. [Hint: Your answer should be a fraction
which is quite close to the exact result 1.84118378134054... ].

Solution.

1. Initial steps

The wave equation can be written

∂2u
∂t2 = c2∇2u .
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To separate variables, we first propose that u = S(r, θ)T(t), substitute this form into the
wave equation, and divide by c2ST. We obtain

T′′

c2T
=
∇2S

S
= −λ2 ,

where we have made the additional step in observing that, in this form, the wave equation
has a solution only if both left and right sides are equal to a constant, and defined that
separation constant “−λ2”. The time dependent equation is

T′′ + c2λ2T = 0 ,

and the solution is
T = a cos(cλt) + b sin(cλt) .

The time dependent equation is simple. But solving the spatial equation requires yet an-
other application of separation of variables. We introducing the form for∇2, the equation
for S(r, θ) becomes

1
r

∂

∂r

(
r

∂S
∂r

)
+

1
r2

∂2S
∂θ2 + λ2S = 0 .

To make further progress, we propose S = f (r)g(θ). Substituting this into the S-equation
yields

g
r

(
r f ′
)′

+
f

r2 g′′ + λ2 f g = 0 .

Next, we divide by f g and multiply by r2. Moving the g-dependent part onto the other
side of the equation, we find

r
f

(
r f ′
)′

+ λ2r2 = −g′′

g

The left side is a function of r and the right side is a function of θ; therefore they must
be equal to a constant. Because we expect periodic solutions for g(θ), we denote this
constant n2 (we can later verify that n is indeed an integer). We thus write

r
f

(
r f ′
)′

+ λ2r2 = −g′′

g
= n2 ,

and the g-equation, or θ-dependent equation, is

g′′ + n2g = 0 ,

which has the solutions
g = c cos(nθ) + d sin(nθ) .

Both of these solutions satisfy periodic conditions at θ = 0, 2π if n is an integer. The
r-dependent equation is

r
(

r f ′
)′

+
(

λ2r2 − n2
)

f = 0 .
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or
r2 f ′′ + r f ′ +

(
λ2r2 − n2

)
f = 0

In summary, the three equations are

t : T′′ + c2λ2T = 0 ,

θ : g′′ + n2g = 0 ,

r : r2 f ′′ + r f ′ +
(

λ2r2 − n2
)

f = 0 .

The solution to the t-dependent and θ-dependent equation are

T = a cos(cλt) + b sin(cλt) .

and
g = c cos(nθ) + d sin(nθ) .

2. Bessel’s equation as a Strum-Liouville problem

Using d/dr for derivatives, Bessel’s equation is

r2 d2 f
dr2 + r

d f
dr

+
(

λ2r2 − n2
)

f = 0 .

If we divide by r and note that

d
dr

(
r

d f
dr

)
= r

d2 f
dr2 +

d f
dr

,

we can write Bessel’s equation in the form

d
dr

(
r

d f
dr

)
− n2

r
f + λ2r f = 0 .

This is the Strum-Liouville form with p = r, q = −n2/r, σ = r, and boundaries at r = 0
and r = a. The Sturm-Liouville eigenvalue is λ2.

This is a “singular” Sturm-Liouville eigenvalue problem because q goes to infinity as r →
0. However, for this particular, problem, we can still use the results of Sturm-Liouville.
Note that “n” is a parameter in the problem. Thus, we know there will be an infinity
number of solutions for every n. The eigenvalue relation in lectures and book was given
as ∫ a

0
φmφpσ dr = 0 ,

where m 6= p, so that φm and φp are different eigenfunctions. The solutions to Bessel’s
equation are f = Jn (λmnr). Plugging in these eigenfunctions and using σ = r, the or-
thogonality relation is ∫ a

0
Jn(λmnr)Jn(λpnr)r dr = 0 ,
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when m 6= p.

Note that n is constant. Thus, for example, when n = 1, two eigenfunctions of the cor-
responding Bessel eigenvalue problem are J1(λ11r) and J1(λ21r). Thus for a given n, the
solutions have the same form – Jn – while the argument of Jn changes. This situation is
much like that for the eigenproblem

y′′ + y = 0 , y(0) = y(2π) = 0 .

In this case, every eigenfunction is a sine function with a different argument; for example,
sin(nx) and sin(2nx). In the Bessel function case, the m values of λnm corresponding to
each n-eigenproblem must be determined numerically (in contrast to the simple case with
sines and cosines, where the arguments are integers).

3. A general solution

The solution to the t-problem is

T = a cos(cλt) + b sin(cλt) .

The initial condition
∂u
∂t

= 0

implies that b = 0. The solution to the θ-problem is g = c cos(nθ) + d sin(nθ) and the
solution to the r-problem is f = AJn(λmnr). Thus the total solution for u(r, θ, t) is

u(r, θ, t) =
∞

∑
n=0

∞

∑
m=0

Jn (λmnr) cos (cλmnt)
(

Amn sin(nθ) + Bmn cos(nθ)
)

.

Applying the initial condition for u(r, θ, t = 0) implies

φ(r, θ) =
∞

∑
n=0

∞

∑
m=0

Jn (λmnr)
(

Amn sin(nθ) + Bmn cos(nθ)
)

.

Similar to problems 1 and 2, we multiply by modes in θ and r to isolate the m and n. If we
multiply by sin(pθ) and integrate from θ = 0 to θ = 2π, we obtain∫ 2π

0
φ sin(pθ)dθ =

∞

∑
m=0

πAmp Jp
(
λmpr

)
.

Next we multiply by rJp(λqpr) and integrate from 0 to a. This multiplication allows us
to use the orthogonality condition for Bessel functions shown in part 2 to isolate the qth

mode from the sum over m. We find∫ a

0

∫ 2π

0
φ sin(pθ)Jp

(
λpqr

)
r dθ dr = π

∫ a

0
rJ2

p
(
λqpr

)
drAqp ,
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or, in terms of m and n

Amn =

∫ a
0

∫ 2π
0 φ sin(nθ)Jn (λmnr) r dθ dr

π
∫ a

0 rJ2
n (λmnr) dr

.

Notice that the formula for the Bmn is identical with cos(nθ) swapped out for sin(nθ) –
except for n = 0, since in this case the θ integral produces a factor of 2π rather than just
π. Therefore,

Bmn =

∫ a
0

∫ 2π
0 φ cos(nθ)Jn (λmnr) r dθ dr

π
∫ a

0 rJ2
n (λmnr) dr

.

for n > 0, and

Bm0 =

∫ a
0

∫ 2π
0 φJn (λmnr) r dθ dr

2π
∫ a

0 rJ2
n (λmnr) dr

.

With Amn and Bmn, and

u(r, θ, t) =
∞

∑
n=0

∞

∑
m=0

Jn (λmnr) cos (cλmnt)
(

Amn sin(nθ) + Bmn cos(nθ)
)

,

we have solved the problem.

Transformed Bessel’s equation and the Rayleigh quotient

Bessel’s equation with n = 1 is

d
dr

(
r

d f
dr

)
− 1

r
f + λ2r f = 0 .

The transformation r = ax =⇒ x = r/a implies that dx = dr/a, so that dx/dr = 1/a,
and

d
dr

=
d

dx
dx
dr

=
1
a

d
dx

.

Thus in terms of x we have

d
dx

(
x

d f
dx

)
− 1

x
f + (λa)2x f = 0 .

The boundary condition at r = a is now applied at x = (r = a)/a = 1, and therefore the
boundary condition is d f /dx = 0 at x = 1. With the test function F(x) = 2x − x2, we
have

dF
dx

= 2− 2x ,

and therefore dF/dx(x = 1) = 0. At x = 0, F(x) is bounded, which satisfies the condition
on J1. In fact, F(x) was chosen so it matches the fact that J1(x = 0) = 0, which means it
will make for a particularly good test function.
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The general Sturm-Liouville form for the Rayleigh quotient for a domain between x = 0
and x = 1, in terms of a trial function F, is

R =
−pF dF

dx

∣∣∣1
0
+
∫ 1

0 p
(

dF
dx

)2
− qF2 dx∫ 1

0 F2σ dx
.

For p = x, q = −1/x, and σ = x, we have that R ≤ (λa)2, and the Rayleigh quotient gives
an estimate for quantity (λa)2. Note that the boundary terms disappear because p = 0 at
x = 0 and d f /dx = 0 at x = 1. Therefore the Rayleigh quotient can be written

R =

∫ 1
0 x
(

dF
dx

)2
+ 1

x F2 dx∫ 1
0 xF2 dx

.

We use the test function F(x) = 2x− x2. Notice that dF/dx = 2− 2x, and that

F2 = x4 − 4x3 + 4x2 ,

and that (
dF
dx

)2

= 4x2 − 8x + 4 .

The Rayleigh quotient becomes

R =

∫ 1
0 5x3 − 12x2 + 8x dx∫ 1
0 x5 − 4x4 + 4x3 dx

,

=
5
4 − 4 + 4
1
6 −

4
5 + 1

,

=
75
22

.

Notice that λ11a is the first zero the derivative of the first Bessel function, since the condi-
tion at r = a requires that

d
dr

J1(λ11r)
∣∣∣
r=a

= 0 ,

Since the Rayleigh quotient gives an estimate for (λ1a)2, this implies that

λ11a ≈
√

75
22

= 1.846 .

The actual value of the first zero of J′1(x) is 1.8411... which means that
√

75/22 is off by
just 0.28%.
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