Homework 4

Due May 13, 2015.

1 Heat equation in a square. Solve the heat equation for u(x, y, t) in the square 0 < x < L, 0 < y < L. On the boundaries, assume the normal derivative vanishes, that is $\frac{\partial u}{\partial n} = \mathbf{\hat{n}} \cdot \nabla u = 0$ (where $\mathbf{\hat{n}}$ is a normal vector to the boundary pointing out of the domain), which implies

$$\frac{\partial u}{\partial x} = 0$$
 at $x = 0, L$,
 $\frac{\partial u}{\partial y} = 0$ at $y = 0, L$.

and

Take a general initial condition $u(x, y, t = 0) = \phi(x, y)$.

Solution. The heat equation is

$$\frac{\partial u}{\partial t} = k \nabla^2 u = k \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \,.$$

With the given initial and boundary conditions, we can solve the heat equation using separation of variables. We first propose u = S(x, y)T(t) and insert this into the heat equation. After dividing by kST, we obtain

$$\frac{T'}{kT} = \frac{\nabla^2 S}{S} = -\lambda \,,$$

where we have indicated that, because either side is a functions of *t* or (x, y), but not both, the only way they can be equal is if they are both equal to a constant. We denote this constant " $-\lambda$ " so the *t*-equation yields exponentially decreasing solutions. The *t*-equation is

$$T'+k\lambda T=0,$$

and the solution is

$$T = A \mathrm{e}^{-k\lambda t}$$

We turn to the equation in (x, y), which is

$$\nabla^2 S + \lambda S = 0.$$

We separate variables again by proposing S(x, y) = f(x)g(y). and dividing by f(x)g(y). This yields

$$\frac{f''}{f} + \lambda = -\frac{g''}{g} = \mu ,$$

where we have noted the existence of a second separation constant, μ , which arises for the same reason as the first. Note that the boundary conditions on *u* imply that

$$f'(0) = f'(L) = 0$$
, and $g'(0) = g'(L) = 0$.

The equation for g(y) is

$$g'' + \mu g = 0.$$

This equation has sine and cosine solutions; however, the only solution that can satisfy the condition g'(0) = 0 is cosine; therefore

$$g = B\cos\left(\sqrt{\mu}y\right) \,.$$

Applying the condition g'(L) = 0 implies that μ must be $\mu_n = (n\pi/L)^2$, where *n* is an integer. The solution for g(y) is therefore

$$g=B_n\cos\left(\frac{n\pi y}{L}\right)\,.$$

We move on to the *x*-equation, which is

$$f'' + (\lambda - \mu_n)f = 0.$$

Remember that we found μ_n in the equation for g. We leave it as μ_n here to save some effort in rewriting it. As for g(y), the only solution for f(x) that satisfies f'(0) = 0 is

$$f = C \cos\left(\sqrt{\lambda - \mu_n}x\right)$$

Then, the condition that f'(L) = 0 implies that the combination $\lambda - \mu_n$ must be equal to

$$\lambda-\mu_n=\left(rac{m\pi}{L}
ight)^2$$
 ,

where m is a second, different integer from n. This further implies that

$$\lambda_{mn} = \mu_n + \left(\frac{m\pi}{L}\right)^2 = \left(\frac{n\pi}{L}\right)^2 + \left(\frac{m\pi}{L}\right)^2,$$

and that the solution for f(x) is

$$f(x) = C_m \cos\left(\frac{m\pi x}{L}\right)$$
.

We can thus construct the total solution for u(x, y),

$$u(x,y,t) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{mn} \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi y}{L}\right) e^{-k\lambda_{mn}t},$$

where $\lambda_{mn} = \left(\frac{n\pi}{L}\right)^2 + \left(\frac{m\pi}{L}\right)^2$. We apply the initial condition to determine the constant A_{mn} . Taking t = 0 in our expression for u(x, y, t), this implies

$$\phi(x,y) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{mn} \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi y}{L}\right) \,.$$

The above expression is an infinite sum over *two* indicies *n* and *m*. We isolate the *x*-index by multiplying one of the spatial modes, which can be written

$$\cos\left(\frac{p\pi x}{L}\right)$$

Multiplying by this and integrating over *x* gives

$$\int_0^L \phi \cos\left(\frac{p\pi x}{L}\right) \, \mathrm{d}x = \left[\sum_{n=0}^\infty A_{pn} \cos\left(\frac{n\pi y}{L}\right)\right] \int_0^L \cos^2\left(\frac{p\pi x}{L}\right) \, \mathrm{d}x \, .$$

We now isolate the *y*-index by multiplying by a *y*-mode, which for this problem is identical to the *x*-modes. We write this mode as $\cos(q\pi y/L)$. So, multiplying by $\cos(q\pi y/L)$ and integrating over *y* yields

$$\int_0^L \int_0^L \phi \cos\left(\frac{p\pi x}{L}\right) \cos\left(\frac{q\pi y}{L}\right) \, \mathrm{d}x \, \mathrm{d}y = A_{pq} \left[\int_0^L \cos^2\left(\frac{q\pi y}{L}\right) \, \mathrm{d}y\right] \left[\int_0^L \cos^2\left(\frac{p\pi y}{L}\right) \, \mathrm{d}x\right].$$

This is a general expression for A_{pq} , and solves the problem. We can go a step further, however, because we can evaluate the integrals. When p > 0 and q > 0 each integral is equal to L/2, and thus their product is $L^2/4$. When p = 0 but q > 0, or when q = 0 and p > 0, one of the integrals is L and thus their product is $L^2/2$. Finally, when p = q = 0, both integrals are L and their product is L^2 . The general solution to the heat equation in a square with the given boundary conditions is therefore

$$u(x,y,t) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} A_{mn} \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi y}{L}\right) \exp\left[-k\left[\left(\frac{n\pi}{L}\right)^2 + \left(\frac{m\pi}{L}\right)^2\right]\right],$$

where the A_{mn} are given by

$$A_{mn} = \int_0^L \int_0^L \phi \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi y}{L}\right) \, \mathrm{d}x \, \mathrm{d}y \begin{cases} \frac{4}{L^2} & \text{when} & n > 0, m > 0\\ \frac{2}{L^2} & \text{when} & \left(n = 0, m > 0\right) \, \mathrm{or} \left(m = 0, n > 0\right)\\ \frac{1}{L^2} & \text{when} & n = m = 0. \end{cases}$$

2 Wave equation in a rectangle. The wave equation in Cartesian coordinates is

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

We consider solving this equation in a rectangular domain, where 0 < x < L and 0 < y < H. On the boundaries we use the condition u = 0, which implies

$$u(0, y, t) = u(L, y, t) = u(x, 0, t) = u(x, H, t) = 0$$

Proceeding as in class, find the solution satisfying the initial condition

$$u(x,y,0) = x(L-x)y(H-y), \qquad \frac{\partial u}{\partial t}(x,y,0) = 0$$

Solution. The procedure for the wave equation is essentially identical to the heat equation, except that the *t*-equation has oscillatory solutions rather than exponentially decaying ones. We begin by separating variables with u = T(t)S(x, y), inserting this into the wave equation, dividing by c^2ST , and introducing a separation constant. Going through the motions, we find

$$\frac{T''}{c^2T} = \frac{\nabla^2 S}{S} = -\kappa^2$$

Above we have *defined* the separation constant suggestively as κ^2 . Of course, we can use whatever form for the separation constant that we like. κ^2 seems like a nice choice, because then the solution to the *T* equation is

$$T = A\cos\left(c\kappa t\right) \,.$$

In the above we have eliminated the other solution, $sin(c\kappa t)$, because it cannot satisfy the initial condition $\partial u/\partial t = 0$ at t = 0. The S(x, y) equation is

$$\nabla^2 S + \kappa^2 S = 0 \,.$$

The procedure for S(x, y) is identical to that for the heat equation, so we move more quickly through this solution. We separate variables by proposing S(x, y) = f(x)g(y), inserting it into the governing equation, dividing by fg, and identifying a separation constant, which we define λ^2 . This implies

$$\frac{f''}{f} + \kappa^2 = -\frac{g''}{g} = \lambda^2 \,.$$

The boundary conditions on *f* and *g* are

$$f(0) = f(L) = g(0) = g(H) = 0.$$

The *y*-equation is $g'' + \lambda^2 g = 0$, and the boundary conditions imply that the eigenfunction solutions are $g = B_n \sin(n\pi y/H)$ and that $\lambda = n\pi/H$. The *x*-equation is

$$f'' + \left(\kappa^2 - \lambda^2\right)f = 0.$$

Similar to the *y*-equation, the solutions satisfying both boundary conditions have the form $f(x) = C_m \sin(m\pi x/L)$, and that

$$\kappa^2 - \lambda^2 = \left(\frac{n\pi}{H}\right)^2$$
 which implies $\kappa_{mn} = \sqrt{\left(\frac{m\pi}{L}\right)^2 + \left(\frac{n\pi}{H}\right)^2}$.

The total solution for u(x, y, t) can then be written

$$u(x,y,t) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{mn} \sin\left(\frac{m\pi x}{L}\right) \sin\left(\frac{n\pi y}{H}\right) \cos\left(c\kappa_{mn}t\right) ,$$

where

$$\kappa_{mn} = \sqrt{\left(\frac{m\pi}{L}\right)^2 + \left(\frac{n\pi}{H}\right)^2}.$$

To find the coefficients A_{mn} we apply the initial condition, which implies

$$x(L-x)y(H-y) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{mn} \sin\left(\frac{m\pi x}{L}\right) \sin\left(\frac{n\pi y}{H}\right)$$

As before, we isolate the coefficients by multiplying by a spatial mode and integrating. We take a more accelerated route than in the discussion for Problem 1 by multiplying by

$$\sin\left(\frac{p\pi x}{L}\right)\sin\left(\frac{q\pi y}{H}\right)$$

and integrating over both *x* and *y*. This yields

$$\int_0^H \int_0^L x(L-x) y(H-y) \sin\left(\frac{p\pi x}{L}\right) \sin\left(\frac{q\pi y}{H}\right) dx dy$$
$$= A_{pq} \left[\int_0^H \sin^2\left(\frac{q\pi y}{H}\right) dy\right] \left[\int_0^L \sin^2\left(\frac{p\pi x}{L}\right) dx\right].$$

Note that we do not have the cases p = 0 or q = 0 as in the heat equation. Also note that the integral on the left side can be performed over x and y separately, or in other words,

$$\int_0^H \int_0^L x(L-x) y(H-y) \sin\left(\frac{p\pi x}{L}\right) \sin\left(\frac{q\pi y}{H}\right) dx dy$$
$$= \left[\int_0^H y(H-y) \sin\left(\frac{q\pi y}{H}\right) dy\right] \left[\int_0^L x(L-x) \sin\left(\frac{p\pi x}{L}\right) dx\right].$$

Therefore the general form for A_{pq} is

$$A_{pq} = \frac{4}{HL} \left[\int_0^H y(H-y) \sin\left(\frac{q\pi y}{H}\right) \, \mathrm{d}y \right] \left[\int_0^L x(L-x) \sin\left(\frac{p\pi x}{L}\right) \, \mathrm{d}x \right].$$

Now we calculate the *y*-integral. We use integration by parts, where in terms of the rule $\int v \, dw = wv - \int w \, dv$ we define

$$v = y(H - y)$$
, $w = -\frac{H}{q\pi} \cos\left(\frac{q\pi y}{H}\right)$,
 $dv = H - \frac{1}{2}y$, $dw = \sin\left(\frac{q\pi y}{H}\right)$.

Notice that v = y(H - y) vanishes at both 0 and *H*, and therefore the term vw term does not contribute to the integration by parts. Therefore,

$$\int_0^H y(H-y) \sin\left(\frac{q\pi y}{H}\right) \, \mathrm{d}y = -\int v \, \mathrm{d}w = \int_0^H \frac{H}{q\pi} \left(H - \frac{1}{2}y\right) \cos\left(\frac{q\pi y}{H}\right) \, \mathrm{d}y.$$

We iterate again with

$$v = H - \frac{1}{2}y$$
, $w = \left(\frac{H}{q\pi}\right)^2 \sin\left(\frac{q\pi y}{H}\right)$,
 $dv = -\frac{1}{2}$, $dw = \frac{H}{q\pi} \cos\left(\frac{q\pi y}{H}\right)$.

Notice that this time, w vanishes at 0 and H and again the term vw does not contribute to the integral. We thus get

$$\int_{0}^{H} \frac{H}{q\pi} \left(H - \frac{1}{2}y \right) \cos\left(\frac{q\pi y}{H}\right) \, \mathrm{d}y = \frac{1}{2} \int_{0}^{H} \left(\frac{H}{q\pi}\right)^{2} \sin\left(\frac{q\pi y}{H}\right) \, \mathrm{d}y \,,$$
$$= -\frac{1}{2} \left(\frac{H}{q\pi}\right)^{3} \cos\left(\frac{q\pi y}{H}\right) \Big|_{0}^{H} \,,$$
$$= \frac{1}{2} \left(\frac{H}{q\pi}\right)^{3} \left(1 - \cos(q\pi)\right) \,.$$

The *x*-integral is exactly the same with *H* replaced by *L*. Therefore

$$\int_0^L x(L-x)\sin\left(\frac{p\pi x}{L}\right) \, \mathrm{d}x = \frac{1}{2}\left(\frac{L}{p\pi}\right)^3 \left(1 - \cos(p\pi)\right).$$

The general solution for u(x, y, t) can therefore be written

$$u(x,y,t) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} A_{mn} \sin\left(\frac{m\pi x}{L}\right) \sin\left(\frac{n\pi y}{H}\right) \cos\left(c\kappa_{mn}t\right) ,$$

where

$$\kappa_{mn} = \sqrt{\left(\frac{n\pi}{H}\right)^2 + \left(\frac{n\pi}{H}\right)^2}.$$

and

$$A_{mn} = \frac{(HL)^2}{(mn\pi^2)^3} \left(1 - \cos(m\pi)\right) \left(1 - \cos(n\pi)\right).$$

It is possible to simplify this expression further by noting that $1 - \cos(m\pi)$ is either 0 or 2, but we leave it in this form here, which is perfectly valid.

3 Wave equation on a circular membrane. Consider the wave equation on a circular membrane of radius *a*. The wave equation in polar coordinates is,

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right].$$

Use the boundary condition $\partial u / \partial n = 0$ on the boundaries, which implies

$$\frac{\partial u}{\partial r} = 0$$
 at $r = a$.

Answer the following:

- 1. Use separation of variables to derive three equations, one depending on t, one depending on r, and one depending on θ . Write down the solution to the t-dependent equation and the θ -dependent equation.
- 2. Your *r*-dependent equation will take the form

$$r^2 \frac{\mathrm{d}^2 f}{\mathrm{d}r^2} + r \frac{\mathrm{d}f}{\mathrm{d}r} + \left(\lambda^2 r^2 - n^2\right) f = 0,$$

where λ is an eigenvalue and n is an integer. If we introduce the substitution $z = \lambda r$ and divide by z^2 , we obtain Bessel's equation from class. The solution bounded at r = 0 is therefore $f(r) = AJ_n(\lambda r)$, where A is a constant and J_n is the Bessel function of the first kind. The eigenvalues λ_{mn} are determined by the boundary condition at r = a and requires finding the zeros of the Bessel functions (or the derivatives of the Bessel functions). For now, don't worry about finding the λ_{mn} .

Now, rewrite Bessel's equation in Sturm–Liouville form and, using the results of Sturm-Liouville theory, derive the orthogonality relation for the functions $J_n(\lambda_{mn}r)$ over the interval (0, a).

3. Using the orthogonality relation for the functions $J_n(\lambda a)$ over (0, a), write the general solution to the wave equation when the initial conditions are

$$\frac{\partial u}{\partial t}(r,\theta,t=0)=0$$
, and $u(r,\theta,t=0)=\phi(r,\theta)$.

- 4. Take n = 1 in Bessel's equation and change variable to x, where x = r/a. Write down the transformed version of Bessel's equation and the corresponding Rayleigh quotient (notice that the boundary terms vanish from the Rayleigh quotient, leaving only terms that involve integrals).
- 5. Now consider the test function $F(x) = 2x x^2$. First, taking into account that x = r/a, confirm that F(x) satisfies the condition on the *x*-dependent solution f(x). Next, use the Rayleigh quotient for Bessel's equation to generate an estimate for the first zero of $J'_1(x)$, which corresponds to $\lambda_1 a$. [*Hint: Your answer should be a fraction which is quite close to the exact result* 1.84118378134054...].

Solution.

1. Initial steps

The wave equation can be written

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u \,.$$

To separate variables, we first propose that $u = S(r, \theta)T(t)$, substitute this form into the wave equation, and divide by c^2ST . We obtain

$$\frac{T''}{c^2T} = \frac{\nabla^2 S}{S} = -\lambda^2 \,,$$

where we have made the additional step in observing that, in this form, the wave equation has a solution only if both left and right sides are equal to a constant, and defined that separation constant " $-\lambda^2$ ". The time dependent equation is

$$T'' + c^2 \lambda^2 T = 0,$$

and the solution is

 $T = a\cos(c\lambda t) + b\sin(c\lambda t).$

The time dependent equation is simple. But solving the spatial equation requires yet another application of separation of variables. We introducing the form for ∇^2 , the equation for $S(r, \theta)$ becomes

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial S}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 S}{\partial \theta^2} + \lambda^2 S = 0.$$

To make further progress, we propose $S = f(r)g(\theta)$. Substituting this into the *S*-equation yields

$$\frac{g}{r}\left(rf'\right)' + \frac{f}{r^2}g'' + \lambda^2 fg = 0.$$

Next, we divide by fg and multiply by r^2 . Moving the *g*-dependent part onto the other side of the equation, we find

$$\frac{r}{f}\left(rf'\right)' + \lambda^2 r^2 = -\frac{g''}{g}$$

The left side is a function of r and the right side is a function of θ ; therefore they must be equal to a constant. Because we expect periodic solutions for $g(\theta)$, we denote this constant n^2 (we can later verify that n is indeed an integer). We thus write

$$\frac{r}{f}\left(rf'\right)' + \lambda^2 r^2 = -\frac{g''}{g} = n^2,$$

and the *g*-equation, or θ -dependent equation, is

$$g'' + n^2 g = 0$$

which has the solutions

$$g = c\cos(n\theta) + d\sin(n\theta).$$

Both of these solutions satisfy periodic conditions at $\theta = 0, 2\pi$ if *n* is an integer. The *r*-dependent equation is

$$r(rf')' + (\lambda^2 r^2 - n^2)f = 0.$$

or

$$r^{2}f'' + rf' + (\lambda^{2}r^{2} - n^{2})f = 0$$

In summary, the three equations are

$$t: T'' + c^2 \lambda^2 T = 0, \theta: g'' + n^2 g = 0, r: r^2 f'' + rf' + (\lambda^2 r^2 - n^2) f = 0.$$

The solution to the *t*-dependent and θ -dependent equation are

$$T = a\cos(c\lambda t) + b\sin(c\lambda t)$$

and

$$g = c\cos(n\theta) + d\sin(n\theta).$$

2. Bessel's equation as a Strum-Liouville problem

Using d/dr for derivatives, Bessel's equation is

$$r^2 \frac{\mathrm{d}^2 f}{\mathrm{d}r^2} + r \frac{\mathrm{d}f}{\mathrm{d}r} + \left(\lambda^2 r^2 - n^2\right) f = 0.$$

If we divide by *r* and note that

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(r\frac{\mathrm{d}f}{\mathrm{d}r}\right) = r\frac{\mathrm{d}^2f}{\mathrm{d}r^2} + \frac{\mathrm{d}f}{\mathrm{d}r}\,,$$

we can write Bessel's equation in the form

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(r\frac{\mathrm{d}f}{\mathrm{d}r}\right) - \frac{n^2}{r}f + \lambda^2 rf = 0\,.$$

This is the Strum-Liouville form with p = r, $q = -n^2/r$, $\sigma = r$, and boundaries at r = 0 and r = a. The Sturm-Liouville eigenvalue is λ^2 .

This is a "singular" Sturm-Liouville eigenvalue problem because q goes to infinity as $r \rightarrow 0$. However, for this particular, problem, we can still use the results of Sturm-Liouville. Note that "n" is a *parameter* in the problem. Thus, we know there will be an infinity number of solutions *for every* n. The eigenvalue relation in lectures and book was given as

$$\int_0^a \phi_m \phi_p \sigma \,\mathrm{d}r = 0\,,$$

where $m \neq p$, so that ϕ_m and ϕ_p are *different* eigenfunctions. The solutions to Bessel's equation are $f = J_n(\lambda_{mn}r)$. Plugging in these eigenfunctions and using $\sigma = r$, the orthogonality relation is

$$\int_0^a J_n(\lambda_{mn}r)J_n(\lambda_{pn}r)r\,\mathrm{d}r=0\,,$$

when $m \neq p$.

Note that *n* is constant. Thus, for example, when n = 1, two eigenfunctions of the corresponding Bessel eigenvalue problem are $J_1(\lambda_{11}r)$ and $J_1(\lambda_{21}r)$. Thus for a given *n*, the solutions have the same form – J_n – while the argument of J_n changes. This situation is much like that for the eigenproblem

$$y'' + y = 0$$
, $y(0) = y(2\pi) = 0$.

In this case, every eigenfunction is a sine function with a different argument; for example, sin(nx) and sin(2nx). In the Bessel function case, the *m* values of λ_{nm} corresponding to each *n*-eigenproblem must be determined numerically (in contrast to the simple case with sines and cosines, where the arguments are integers).

3. A general solution

The solution to the *t*-problem is

$$T = a\cos(c\lambda t) + b\sin(c\lambda t).$$

The initial condition

$$\frac{\partial u}{\partial t} = 0$$

implies that b = 0. The solution to the θ -problem is $g = c \cos(n\theta) + d \sin(n\theta)$ and the solution to the *r*-problem is $f = A J_n(\lambda_{mn} r)$. Thus the total solution for $u(r, \theta, t)$ is

$$u(r,\theta,t) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} J_n(\lambda_{mn}r) \cos(c\lambda_{mn}t) \left(A_{mn}\sin(n\theta) + B_{mn}\cos(n\theta)\right).$$

Applying the initial condition for $u(r, \theta, t = 0)$ implies

$$\phi(r,\theta) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} J_n \left(\lambda_{mn} r \right) \left(A_{mn} \sin(n\theta) + B_{mn} \cos(n\theta) \right).$$

Similar to problems 1 and 2, we multiply by modes in θ and r to isolate the m and n. If we multiply by $\sin(p\theta)$ and integrate from $\theta = 0$ to $\theta = 2\pi$, we obtain

$$\int_0^{2\pi} \phi \sin(p\theta) \, \mathrm{d}\theta = \sum_{m=0}^\infty \pi A_{mp} J_p\left(\lambda_{mp} r\right) \, .$$

Next we multiply by $rJ_p(\lambda_{qp}r)$ and integrate from 0 to *a*. This multiplication allows us to use the orthogonality condition for Bessel functions shown in part 2 to isolate the q^{th} mode from the sum over *m*. We find

$$\int_0^a \int_0^{2\pi} \phi \sin(p\theta) J_p(\lambda_{pq}r) r \, \mathrm{d}\theta \, \mathrm{d}r = \pi \int_0^a r J_p^2(\lambda_{qp}r) \, \mathrm{d}r A_{qp},$$

or, in terms of *m* and *n*

$$A_{mn} = \frac{\int_0^a \int_0^{2\pi} \phi \sin(n\theta) J_n(\lambda_{mn}r) r \, d\theta \, dr}{\pi \int_0^a r J_n^2(\lambda_{mn}r) \, dr}$$

Notice that the formula for the B_{mn} is identical with $\cos(n\theta)$ swapped out for $\sin(n\theta)$ – except for n = 0, since in this case the θ integral produces a factor of 2π rather than just π . Therefore,

$$B_{mn} = \frac{\int_0^a \int_0^{2\pi} \phi \cos(n\theta) J_n(\lambda_{mn}r) r \, d\theta \, dr}{\pi \int_0^a r J_n^2(\lambda_{mn}r) \, dr}$$

for n > 0, and

$$B_{m0} = \frac{\int_0^a \int_0^{2\pi} \phi J_n\left(\lambda_{mn}r\right) r \,\mathrm{d}\theta \,\mathrm{d}r}{2\pi \int_0^a r J_n^2\left(\lambda_{mn}r\right) \,\mathrm{d}r}$$

With A_{mn} and B_{mn} , and

$$u(r,\theta,t) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} J_n(\lambda_{mn}r) \cos(c\lambda_{mn}t) \left(A_{mn}\sin(n\theta) + B_{mn}\cos(n\theta)\right),$$

we have solved the problem.

Transformed Bessel's equation and the Rayleigh quotient

Bessel's equation with n = 1 is

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(r\frac{\mathrm{d}f}{\mathrm{d}r}\right) - \frac{1}{r}f + \lambda^2 rf = 0$$

The transformation $r = ax \implies x = r/a$ implies that dx = dr/a, so that dx/dr = 1/a, and

$$\frac{\mathrm{d}}{\mathrm{d}r} = \frac{\mathrm{d}}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}r} = \frac{1}{a}\frac{\mathrm{d}}{\mathrm{d}x}$$

Thus in terms of *x* we have

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(x\frac{\mathrm{d}f}{\mathrm{d}x}\right) - \frac{1}{x}f + (\lambda a)^2 x f = 0.$$

The boundary condition at r = a is now applied at x = (r = a)/a = 1, and therefore the boundary condition is df/dx = 0 at x = 1. With the test function $F(x) = 2x - x^2$, we have

$$\frac{\mathrm{d}F}{\mathrm{d}x} = 2 - 2x\,,$$

and therefore dF/dx(x = 1) = 0. At x = 0, F(x) is bounded, which satisfies the condition on J_1 . In fact, F(x) was chosen so it matches the fact that $J_1(x = 0) = 0$, which means it will make for a particularly good test function. The general Sturm-Liouville form for the Rayleigh quotient for a domain between x = 0 and x = 1, in terms of a trial function *F*, is

$$R = \frac{-pF\frac{\mathrm{d}F}{\mathrm{d}x}\Big|_0^1 + \int_0^1 p\left(\frac{\mathrm{d}F}{\mathrm{d}x}\right)^2 - qF^2\,\mathrm{d}x}{\int_0^1 F^2\sigma\,\mathrm{d}x}.$$

For p = x, q = -1/x, and $\sigma = x$, we have that $R \le (\lambda a)^2$, and the Rayleigh quotient gives an estimate for quantity $(\lambda a)^2$. Note that the boundary terms disappear because p = 0 at x = 0 and df/dx = 0 at x = 1. Therefore the Rayleigh quotient can be written

$$R = \frac{\int_0^1 x \left(\frac{\mathrm{d}F}{\mathrm{d}x}\right)^2 + \frac{1}{x}F^2 \,\mathrm{d}x}{\int_0^1 xF^2 \,\mathrm{d}x}$$

We use the test function $F(x) = 2x - x^2$. Notice that dF/dx = 2 - 2x, and that

$$F^2 = x^4 - 4x^3 + 4x^2$$
,

and that

$$\left(\frac{\mathrm{d}F}{\mathrm{d}x}\right)^2 = 4x^2 - 8x + 4.$$

The Rayleigh quotient becomes

$$R = \frac{\int_0^1 5x^3 - 12x^2 + 8x \, dx}{\int_0^1 x^5 - 4x^4 + 4x^3 \, dx},$$
$$= \frac{\frac{5}{4} - 4 + 4}{\frac{1}{6} - \frac{4}{5} + 1},$$
$$= \frac{75}{22}.$$

Notice that $\lambda_{11}a$ is the first zero the derivative of the first Bessel function, since the condition at r = a requires that

$$\frac{\mathrm{d}}{\mathrm{d}r}J_1(\lambda_{11}r)\Big|_{r=a}=0\,,$$

Since the Rayleigh quotient gives an estimate for $(\lambda_1 a)^2$, this implies that

$$\lambda_{11}a \approx \sqrt{\frac{75}{22}} = 1.846$$

The actual value of the first zero of $J'_1(x)$ is 1.8411... which means that $\sqrt{75/22}$ is off by just 0.28%.