Homework 5

Due May 20, 2015.

1 Legendre polynomials on a tidally locked planet. The steady heat distribution in a solid sphere is governed by Laplace's equation in spherical coordinates,

$$
\nabla^{2} u=\frac{1}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} \frac{\partial u}{\partial \rho}\right)+\frac{1}{\rho^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial u}{\partial \phi}\right)+\frac{1}{\rho^{2} \sin ^{2} \phi} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

In this equation, ρ is the radial coordinate extending from $\rho=0$ at the center of the planet to $\rho=R$ at the surface. The coordinate ϕ is called colatitude and lies in the range $(0, \pi)$, with 0 being at the North Pole and π at the South Pole. θ is the longitudinal angle, which goes from 0 to 2π. Consider the following:

1. Separate variables by writing $u=S(\rho, \phi) q(\theta)$. Solve the equation for θ.
2. Now assume that u does not depend on θ. This assumption means that we are looking for "axisymmetric" solutions. Separate variables again by writing $S(\rho, \phi)=$ $f(\rho) g(\phi)$ and show that $g(\phi)$ satisfies

$$
\frac{\mathrm{d}}{\mathrm{~d} \phi}\left(\sin \phi \frac{\mathrm{~d} g}{\mathrm{~d} \phi}\right)+\mu \sin \phi g=0
$$

where μ is an eigenvalue. The solutions to this Sturm-Liouville equation are called Legendre polynomials. There are two solutions: only one of them is bounded at both $\phi=0$ and $\phi=\pi$, which happens for the eigenvalue $\mu=n(n+1)$, where $n=0,1,2 \ldots$ is an integer. Denote this solution $g_{n}(\phi)=P_{n}(\cos \phi)$, where P_{n} is a polynomial. The first three P_{n} are

$$
\begin{aligned}
& P_{0}=1 \\
& P_{1}=\cos \phi \\
& P_{2}=\frac{1}{2}\left(3 \cos ^{2} \phi-1\right)=\frac{1}{4}(3 \cos 2 \phi+1) .
\end{aligned}
$$

3. Observing that the Legendre equation is a Sturm-Liouville eigenvalue problem, write down the orthogonality relation satisfied by the Legendre polynomials. [Note: it is not necessary to derive the orthogonality relation from scratch; instead simply write down the results of Sturm-Liouville theory as they apply to this particular problem.]
4. Solve the ρ-equation, subject to the condition that $u(\rho=0, \phi)$ is bounded. Write down the full solution to the axisymmetric problem in terms of $P_{n}(\cos \phi)$.
5. Consider the boundary condition

$$
u(\rho=R, \phi)=U \cos \phi
$$

where U is a constant. Find the solution for $u(\rho, \phi)$ which satisfies this boundary condition at $\rho=R$.

2 Green's functions I. Consider the ordinary differential equation,

$$
y^{\prime \prime}-4 y=f(x), \quad y^{\prime}(0)=0 \quad \text { and } \quad y(+\infty) \rightarrow 0
$$

Answer the following:
(a) Find the Green's function $G\left(x, x_{0}\right)$ for this equation, which solves the problem

$$
G^{\prime \prime}-4 G=\delta\left(x-x_{0}\right)
$$

(b) Use the Green's function to find $y(x)$ corresponding to $f(x)=x$.
(c) Could you have obtained the solution without using Green's functions? [Hint: What solution would you guess if you were using the Method of Undetermined Coefficients?]

3 Green's Functions II. Consider the following equidimensional equation:

$$
x^{2} y^{\prime \prime}+x y^{\prime}-9 y=x
$$

with boundary conditions $y(0)$ bounded and $y^{\prime}(1)=0$.
(a) The Green's function for this equation satisfies

$$
x^{2} G^{\prime \prime}+x G^{\prime}-9 G=\delta\left(x-x_{0}\right)
$$

along with the same boundaries as $y(x)$. Solve for the Green's function. [The most efficient way to find the jump condition for the Green's function is to express the equation in self-adjoint (i.e. Sturm-Liouville) form).]
(b) Use the Green's function to solve for for $y(x)$.

4 Variation of parameters. Consider the following inhomogeneous version of Bessel's equation:

$$
x^{2} \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} u}{\mathrm{~d} x}+\left(x^{2}-n^{2}\right) u=f(x)
$$

where n is an integer. Two linearly independent solutions to the homogeneous problem (the problem with $f(x)=0$) are

$$
u_{1}(x)=J_{n}(x) \quad \text { and } \quad u_{2}(x)=Y_{n}(x)
$$

Answer the following:

1. Put Bessel's equation into the Sturm-Liouville form, and identify $p(x)$.
2. We showed in class $p W$ is equal to a constant. With the choice of u_{1} and u_{2} given above, the constant is $c=2 \pi^{-1}$. Using this fact along with the boundary conditions

$$
u(1)=0, \quad \text { and } \quad u(2)=0
$$

write down the "variation of parameters solutions" $u=v_{1} u_{2}+v_{2} u_{2}$ by solving for $v_{1}(x)$ and $v_{2}(x)$ You may leave $v_{1}(x)$ and $v_{2}(x)$ in terms of unevaluated integrals.

