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Homework 5

Due May 20, 2015.

1 Legendre polynomials on a tidally locked planet. The steady heat distribution in a
solid sphere is governed by Laplace’s equation in spherical coordinates,
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In this equation, ρ is the radial coordinate extending from ρ = 0 at the center of the planet
to ρ = R at the surface. The coordinate φ is called colatitude and lies in the range (0, π),
with 0 being at the North Pole and π at the South Pole. θ is the longitudinal angle, which
goes from 0 to 2π. Consider the following:

1. Separate variables by writing u = S(ρ, φ)q(θ). Solve the equation for θ.

2. Now assume that u does not depend on θ. This assumption means that we are
looking for “axisymmetric” solutions. Separate variables again by writing S(ρ, φ) =
f (ρ)g(φ) and show that g(φ) satisfies
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where µ is an eigenvalue. The solutions to this Sturm-Liouville equation are called
Legendre polynomials. There are two solutions: only one of them is bounded at
both φ = 0 and φ = π, which happens for the eigenvalue µ = n(n + 1), where
n = 0, 1, 2... is an integer. Denote this solution gn(φ) = Pn(cos φ), where Pn is a
polynomial. The first three Pn are

P0 = 1 ,
P1 = cos φ ,

P2 = 1
2

(
3 cos2 φ− 1

)
= 1

4 (3 cos 2φ + 1) .

3. Observing that the Legendre equation is a Sturm-Liouville eigenvalue problem,
write down the orthogonality relation satisfied by the Legendre polynomials. [Note:
it is not necessary to derive the orthogonality relation from scratch; instead simply write
down the results of Sturm-Liouville theory as they apply to this particular problem.]

4. Solve the ρ-equation, subject to the condition that u(ρ = 0, φ) is bounded. Write
down the full solution to the axisymmetric problem in terms of Pn(cos φ).
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5. Consider the boundary condition

u(ρ = R, φ) = U cos φ ,

where U is a constant. Find the solution for u(ρ, φ) which satisfies this boundary
condition at ρ = R.

2 Green’s functions I. Consider the ordinary differential equation,

y′′ − 4y = f (x) , y′(0) = 0 and y(+∞)→ 0 .

Answer the following:

(a) Find the Green’s function G(x, x0) for this equation, which solves the problem

G′′ − 4G = δ(x− x0) .

(b) Use the Green’s function to find y(x) corresponding to f (x) = x.

(c) Could you have obtained the solution without using Green’s functions? [Hint: What
solution would you guess if you were using the Method of Undetermined Coefficients?]

3 Green’s Functions II. Consider the following equidimensional equation:

x2y′′ + xy′ − 9y = x ,

with boundary conditions y(0) bounded and y′(1) = 0.

(a) The Green’s function for this equation satisfies

x2G′′ + xG′ − 9G = δ(x− x0) ,

along with the same boundaries as y(x). Solve for the Green’s function. [The most
efficient way to find the jump condition for the Green’s function is to express the equation in
self-adjoint (i.e. Sturm–Liouville) form).]

(b) Use the Green’s function to solve for for y(x).

4 Variation of parameters. Consider the following inhomogeneous version of Bessel’s
equation:

x2 d2u
dx2 + x

du
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+
(
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)

u = f (x) ,

where n is an integer. Two linearly independent solutions to the homogeneous problem
(the problem with f (x) = 0) are

u1(x) = Jn(x) and u2(x) = Yn(x) .

Answer the following:

2



1. Put Bessel’s equation into the Sturm-Liouville form, and identify p(x).

2. We showed in class pW is equal to a constant. With the choice of u1 and u2 given
above, the constant is c = 2π−1. Using this fact along with the boundary conditions

u(1) = 0 , and u(2) = 0 ,

write down the “variation of parameters solutions” u = v1u2 + v2u2 by solving for
v1(x) and v2(x) You may leave v1(x) and v2(x) in terms of unevaluated integrals.
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