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Homework 5

Due May 20, 2015.

1 Legendre polynomials on a tidally locked planet. The steady heat distribution in a
solid sphere is governed by Laplace’s equation in spherical coordinates,

∇2u =
1
ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
+

1
ρ2 sin φ

∂

∂φ

(
sin φ

∂u
∂φ

)
+

1
ρ2 sin2 φ

∂2u
∂θ2 = 0 .

In this equation, ρ is the radial coordinate extending from ρ = 0 at the center of the planet
to ρ = R at the surface. The coordinate φ is called colatitude and lies in the range (0, π),
with 0 being at the North Pole and π at the South Pole. θ is the longitudinal angle, which
goes from 0 to 2π. Consider the following:

1. Separate variables by writing u = S(ρ, φ)q(θ). Solve the equation for θ.

2. Now assume that u does not depend on θ. This assumption means that we are
looking for “axisymmetric” solutions. Separate variables again by writing S(ρ, φ) =
f (ρ)g(φ) and show that g(φ) satisfies

d
dφ

(
sin φ

dg
dφ

)
+ µ sin φ g = 0 ,

where µ is an eigenvalue. The solutions to this Sturm-Liouville equation are called
Legendre polynomials. There are two solutions: only one of them is bounded at
both φ = 0 and φ = π, which happens for the eigenvalue µ = n(n + 1), where
n = 0, 1, 2... is an integer. Denote this solution gn(φ) = Pn(cos φ), where Pn is a
polynomial. The first three Pn are

P0 = 1 ,
P1 = cos φ ,

P2 = 1
2

(
3 cos2 φ− 1

)
= 1

4 (3 cos 2φ + 1) .

3. Observing that the Legendre equation is a Sturm-Liouville eigenvalue problem,
write down the orthogonality relation satisfied by the Legendre polynomials. [Note:
it is not necessary to derive the orthogonality relation from scratch; instead simply write
down the results of Sturm-Liouville theory as they apply to this particular problem.]

4. Solve the ρ-equation, subject to the condition that u(ρ = 0, φ) is bounded. Write
down the full solution to the axisymmetric problem in terms of Pn(cos φ).
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5. Consider the boundary condition

u(ρ = R, φ) = U cos φ ,

where U is a constant. Find the solution for u(ρ, φ) which satisfies this boundary
condition at ρ = R.

Solution.
0. Note. This problem is for a fully solid sphere, such that we will have a boundary

condition only at the surface ρ = R. For θ, we only have to impose that u is periodic
in θ, since the points θ = 0 and θ = 2π are the same. The points at φ at φ = 0
and φ = π are also not actual boundaries in the sphere, but rather correspond to
the north and south pole. We simply specify that u is bounded there, just like we
specify that u is bounded at ρ = 0.

1. We propose u = S(ρ, φ)q(θ) and plug this into ∇2u. We find

0 = ∇2u =
q
ρ2

∂

∂ρ

(
ρ2 ∂S

∂ρ

)
+

q
ρ2 sin φ

∂

∂φ

(
sin φ

∂S
∂φ

)
+

S
ρ2 sin2 φ

d2q
dθ2 .

We then isolate the part of the equation that depends on θ by multiplying by ρ2 sin2 φ/Sq
and moving the θ-dependent part to the other side of the equals sign. In the ordinary
way in separation of variables, we find the two parts of the equation dependent ei-
ther on (ρ, φ) or just θ can be equal to each other only if they are equal to a constant.
In other words, we find

sin2 φ

S
∂

∂ρ

(
ρ2 ∂S

∂ρ

)
+

sin φ

S
∂

∂φ

(
sin φ

∂S
∂φ

)
= −1

q
d2q
dθ2 = λ .

In the above we have defined the separation constant λ. The θ-equation is

d2q
dθ2 + λq = 0 , with q periodic, so q(0) = q(2π) .

The solution is
q = am cos(mθ) + bm sin(mθ) ,

where m is an integer and λ = m2.

2. If u does not depend on θ, Laplace’s equation reduces to

0 =
1
ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
+

1
ρ2 sin φ

∂

∂φ

(
sin φ

∂u
∂φ

)
.

This is the “axisymmetric” form of Laplace’s equation. We propose that u(ρ, φ) =
f (ρ)g(φ), so that

g
ρ2

d
dρ

(
ρ2 d f

dρ

)
+

1
ρ2 sin φ

d
dφ

(
sin φ

dg
dφ

)
= 0 .
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Multiplying by ρ2/ f g and moving the g-part to the other side of the equals sign, we
find

1
f

d
dρ

(
ρ2 d f

dρ

)
= − 1

g sin φ

d
dφ

(
sin φ

dg
dφ

)
= µ .

where we have defined a separation parameter µ. The φ-equation is therefore

d
dφ

(
sin φ

dg
dφ

)
+ µ sin φg = 0 .

As noted in the problem, the solutions to this equation are called “Legendre poly-
nomials” and the standard notation for them is gn = Pn (cos φ). An amazing prop-
erty of the Legendre polynomials is that the eigenvalue associated with Pn is µ =
n(n + 1), where n is an integer.

3. The Sturm-Liouville form is
d

dx

(
p(x)

dw
dx

)
+ qw + λσw = 0 .

Thus in the φ-equation, we have p = sin φ, q = 0, σ = sin φ, and λ = µ. The
orthogonality relation is∫ π

0
Pn(cos(φ))P`(cos φ) sin φ dφ = 0 .

Note that this orthogonality relation for Legendre polynomials is often given in
terms of the coordinate x = cos φ. You can convince yourself this is true by making
the substitution x = cos φ, which implies that dx = − sin φ dφ with x ∈ (1,−1).

4. The ρ-equation is
d

dρ

(
ρ2 d f

dρ

)
− µ f = 0 .

Recall that µ = n(n + 1), where n is an integer. Therefore this equation becomes

ρ2 d2 f
dρ2 + 2ρ

d f
dρ
− n(n + 1) f = 0 .

We can solve this by looking for solutions with f ∼ ρα. This yields a characteristic
equation for α,

α2 + α− n(n + 1) = 0 .

If you notice that α2 + α = α(α + 1), you can think about the symmetry of the
equation and guess that two solutions are α = n and α = −n− 1. An alternative
method is the quadratic equation, which yields

α± = 1
2

(
−1±

√
1 + 4n2 + 4n

)
, (1)

= 1
2

(
−1±

√
(2n + 1)2

)
, (2)

= 1
2 (−1± (2n + 1)) , (3)

= n and − n− 1 . (4)
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The solution for f is therefore

f = cnρn + dnρ−n−1 .

Notice that the solution dnρ−n−1 goes to infinity as ρ → 0, which means that it
cannot be part of our solution. The only solution is therefore f = cnρn. The full
solution is therefore

u =
∞

∑
n=0

cnρnPn(cos φ) .

5. We consider the boundary condition u(ρ = R, φ) = U cos φ. Notice that P1(cos φ) =
cos φ. Therefore when we apply the boundary condition, we may write

U cos φ = UP1(cos φ) =
∞

∑
n=1

cnRnPn(cos φ) .

At this point one can legitimately and validly simply guess that c1 = U/R, since u =
U(ρ/R) cos φ certainly solves the governing equation and satisfies the boundary
condition. If one is interested in a more systematic (and longer) method they can
multiply the equation by Pk(cos φ) sin φ and integrate from φ = 0 to φ = π. Using
the orthogonality condition, this yields∫ π

0
UP1(cos φ)Pk(cos φ) sin φ dφ = ckRk

∫ π

0
P2

k (cos φ) sin φ dφ .

We can then notice that according to the orthogonality of Pk, the integral on the left
is only non-zero when k = 1. Plugging in k = 1 then yields

U = c1R , or c1 =
U
R

.

The total solution is therefore

u(ρ, φ) = U
ρ

R
cos φ .

2 Green’s functions I. Consider the ordinary differential equation,

y′′ − 4y = f (x) , y′(0) = 0 and y(+∞)→ 0 .

Answer the following:

(a) Find the Green’s function G(x, x0) for this equation, which solves the problem

G′′ − 4G = δ(x− x0) .

(b) Use the Green’s function to find y(x) corresponding to f (x) = x.

(c) Could you have obtained the solution without using Green’s functions? [Hint: What
solution would you guess if you were using the Method of Undetermined Coefficients?]
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Solution.
1. The Green’s function solves

G′′ − 4G = δ(x− x0) , with G′(0) = 0 and G(+∞)→ 0 .

The jump condition is found by integrating the equation from x = x0 − ε to x =
x0 + ε and taking the limit as ε→ 0. The delta function is defined such that

lim
ε→0

∫ x0+ε

x0−ε
δ(x− x0)dx = 1 .

The integral over G vanishes because G is bounded and the interval of integration
shrinks to zero. However, the integral over G′′ yields a jump representing the jump
in G between G′(x−0 ) and G′(x+0 ),

G′(x+0 )− G′(x−0 ) = 1 .

We also have that G is continuous at x0 (this is required so that G′ exists), such that
G(x+0 ) = G(x−0 ). A good name for these “patching” conditions is the jump and
continuity condition, respectively.

The solution to the G-equation is

G =

{
Ae2x + Be−2x for x < x0
Ce2x + De−2x for x > x0

The boundary condition G′(0) = 0 implies that A = B. The boundary condition
G(+∞)→ 0 implies that C = 0. The Green’s function becomes

G =

{
A
(
e2x + e−2x) for x < x0
De−2x for x > x0

The continuity condition implies

A
(

e2x0 + e−2x0
)
= De−2x0 =⇒ D = A

(
e4x0 + 1

)
.

Then G and G′ are

G =

{
A
(
e2x + e−2x) for x < x0

A
(
e4x0 + 1

)
e−2x for x > x0

and

G′ =
{

2A
(
e2x − e−2x) for x < x0

−2A
(
e4x0 + 1

)
e−2x for x > x0

The jump condition them implies that

1 = 2A

(
− e−2x0 − e2x0 + e−2x0 − e2x0

)
, (5)

= −4Ae2x0 (6)
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which implies that A = −1
4e−2x0 , and that the Green’s function is

G =

{
−1

4e−2x0
(
e−2x + e2x) for x < x0

−1
4

(
e−2x0 + e2x0

)
e−2x for x > x0

The Green’s function has the property that G(x, x0) = G(x0, x). This means that the
response at x to a point source at x0 is equivalent to the response at x0 to a point
source at x. This is physical symmetry implied by the definition of the problem, and
is not true in general. It is also difficult to deduce unless you explicitly calculate the
Green’s function.

2. With the Green’s function in hand, we now know the general particular solution to
the problem

y′′ − 4y = f (x) , y′(0) = 0 and y(+∞)→ 0 .

is

y(x) =
∫ ∞

0
f (x0)G(x, x0)dx0 , (7)

=
∫ x

0
f (x0)G( x > x0 , x0)dx0︸ ︷︷ ︸

use G for x > x0

+
∫ ∞

x
f (x0)G( x < x0 , x0)dx0︸ ︷︷ ︸

use G for x < x0

, (8)

= −1
4e−2x

∫ x

0
f (x0)

(
e−2x0 + e2x0

)
dx0 − 1

4

(
e−2x + e2x

) ∫ ∞

x
f (x0)e−2x0 dx0 .

(9)

Now we plug in f (x0) = x0. Let’s do they easy integral first. Using integration by
parts, we find ∫ ∞

x
x0e−2x0 dx0 = −1

2 x0 e−2x0
∣∣∣∞
x
+ 1

2

∫ ∞

x
e−2x0 dx0 , , (10)

= 1
2 x e−2x + 1

4e−2x , (11)

= 1
2(x + 1

2)e
−2x . (12)

The second term is therefore

−1
4

(
e−2x + e2x

) ∫ ∞

x
x0e−2x0 dx0 = −1

8(x + 1
2)
(

e−4x + 1
)

, (13)

= −1
8 xe−4x − 1

16e−4x − 1
8 x− 1

16 . (14)

Notice that one of the terms in the first integral is very similar to what we just cal-
culated; therefore we easily obtain∫ x

0
x0e−2x0 dx0 = −1

2 x0 e−2x0
∣∣∣x
0
+ 1

2

∫ x

0
e−2x0 dx0 , (15)

= −1
2 x e−2x + 1

4

(
1− e−2x

)
, (16)

= −1
2 xe−2x − 1

4e−2x + 1
4 . (17)
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This means that

−1
4e−2x

∫ x

0
x0e−2x0 dx0 = 1

8 xe−4x + 1
16e−4x + 1

16e−2x .

There’s only one more integral to calculate, which is∫ x

0
x0e2x0 dx0 = 1

2 x0e2x0
∣∣∣x
0
− 1

2

∫ x

0
e2x0 dx0 , (18)

= 1
2 x e2x − 1

4

(
e2x − 1

)
. (19)

Therefore,

−1
4e−2x

∫ x

0
x0e2x0 dx0 = −1

8 x− 1
16e−2x + 1

16 .

Notice that the parts dependent on e−4x all cancel out. Adding the remaining com-
ponents, we find

y(x) = −1
8 x + 1

16 −
1
16e−2x − 1

8 x− 1
16e−2x + 1

16 (20)

= −1
4 x− 1

8e−2x . (21)

And that’s the solution.

3. We could have guessed the solution by observing that the particular problem has a
straightforward solution, namely

yp = −1
4 x .

To complete the problem we then add the the homogeneous solution which satisfies
the boundary condition at +∞, e−2x. Our guess is then

y = −1
4 x + ce−2x .

Then, taking a derivative and setting y′(0) = 0 implies that c = −1/8.

3 Green’s Functions II. Consider the following equidimensional equation:

x2y′′ + xy′ − 9y = x ,

with boundary conditions y(0) bounded and y′(1) = 0.

(a) The Green’s function for this equation satisfies

x2G′′ + xG′ − 9G = δ(x− x0) ,

along with the same boundaries as y(x). Solve for the Green’s function. [The most
efficient way to find the jump condition for the Green’s function is to express the equation in
self-adjoint (i.e. Sturm–Liouville) form).]
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(b) Use the Green’s function to solve for for y(x).

Solution.
1. To find the Green’s function, we integrate the Green’s function equation over a van-

ishing neighborhood containing x0: in other words, we integrate from x = x0 − ε
to x = x0 + ε and take the limit as ε → 0. As in problem 2, the delta function inte-
grates to 1. Also, the terms involving G and xG′ are bounded, and therefore vanish
when ε→ 0. To evaluate the integral over x2G′′, we use integration by parts, which
implies

lim
ε→0

∫ x0+ε

x0−ε
x2G′′ dx = lim

ε→0

∫ x0+ε

x0−ε

d
dx

(
x2G′

)
− 2xG′ dx , (22)

= lim
ε→0

[
x2G′

∣∣∣x0+ε

x0−ε
−
∫ x0+ε

x0−ε
2xG′ dx

]
, (23)

= x2
0

[
G′(x+0 )− G′(x−0 )

]
. (24)

In the final step, we have used the fact that 2xG′ is bounded and therefore goes to
zero when integrated over a vanishingly small interval. The only other non-zero
term from the equation is the “1” associated with the delta function; and the jump
condition is therefore

G′(x+0 )− G′(x−0 ) = x−2
0 .

In addition to the jump condition we have the “continuity” condition, which re-
quires that

G(x+0 ) = G(x−0 ) .

We need this condition in order for G′ to be bounded. Now, the Green’s function
equation is

x2G′′ + xG′ − 9G = δ(x− x0) , with |G(0)| < ∞ and G′(1) = 0 .

We solve this by setting the right side equal to zero, finding the form for G for both
x < x0 and x > x0, and then applying the boundary conditions. Since this is an
equidimensional equation, we solve it by guessing a solution of the form G = xα.
This yields an equation for α:

α2 − 9 = 0 ,

which implies that α = ±3. The general solution is therefore

G =

{
Ax3 + Bx−3 for x < x0
Cx3 + Dx−3 for x > x0

The condition at x = 0 implies that B = 0. The condition at x = 1 implies that
C− D = 0. We therefore have

G =

{
Ax3 for x < x0

C
(
x3 + x−3) for x > x0
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The continuity condition requires that Ax3
0 = C(x3

0 + x−3
0 ), which implies that

A = C
(

1 + x−6
0

)
.

There we have

G =

{
C
(

1 + x−6
0

)
x3 for x < x0

C
(
x3 + x−3) for x > x0

and

G′ =

{
3C
(

1 + x−6
0

)
x2 for x < x0

3C
(
x2 − x−4) for x > x0

The jump condition therefore implies that

x−2
0 = 3C

(
x2

0 − x−4
0 −

[
x2

0 + x−4
0

] )
, (25)

= −6Cx−4
0 , (26)

and therefore C = −1
6 x2

0. So the Green’s function is,

G =

{
−1

6

(
x2

0 + x−4
0

)
x3 for x < x0

−1
6 x2

0
(
x3 + x−3) for x > x0

2. With the Green’s function, we know that the general solution to the problem

x2y′′ + xy′ − 9y = f (x) , with |y(0)| < ∞ and y′(1) = 0 ,

is

y(x) =
∫ 1

0
f (x0)G(x, x0)dx0 , (27)

=
∫ x

0
f (x0)G(x > x0, x0)dx0︸ ︷︷ ︸

use G for x > x0

+
∫ 1

x
f (x0)G(x < x0, x0)dx0︸ ︷︷ ︸

use G for x < x0

, (28)

= −1
6

(
x3 + x−3

) ∫ x

0
x2

0 f (x0)dx0 − 1
6 x3

∫ 1

x

(
x2

0 + x−4
0

)
f (x0)dx0 . (29)

With f (x) = x the integrals are pretty easy. The first is∫ x

0
x3

0 dx = 1
4 x4 ,

and the second is ∫ 1

x
x3

0 + x−3
0 dx = 1

4 x4
0 − 1

2 x−2
0

∣∣∣1
x

, (30)

= −1
4 −

1
4 x4 + 1

2 x−2 . (31)
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Putting the pieces together, we find

y(x) = −1
6

(
x3 + x−3

) (
1
4 x4
)
− 1

6 x3
(
−1

4 −
1
4 x4 + 1

2 x−2
)

, (32)

= − 1
24

(
x7 + x− x3 − x7 + 2x

)
, (33)

= −1
8 x + 1

24 x3 . (34)

4 Variation of parameters. Consider the following inhomogeneous version of Bessel’s
equation:

x2 d2u
dx2 + x

du
dx

+
(

x2 − n2
)

u = f (x) ,

where n is an integer. Two linearly independent solutions to the homogeneous problem
(the problem with f (x) = 0) are

u1(x) = Jn(x) and u2(x) = Yn(x) .

Answer the following:

1. Put Bessel’s equation into the Sturm-Liouville form, and identify p(x).

2. We showed in class pW is equal to a constant. With the choice of u1 and u2 given
above, the constant is c = 2π−1. Using this fact along with the boundary conditions

u(1) = 0 , and u(2) = 0 ,

write down the “variation of parameters solutions” u = v1u1 + v2u2 by solving for
v1(x) and v2(x). You may leave v1(x) and v2(x) in terms of unevaluated integrals.

Solution.

1. To put Bessel’s equation in Strum-Liouville form, we note that

x
d

dx

(
x

du
dx

)
= x2 d2u

dx2 + x
du
dx

,

and so we can use this fact to write

x
d

dx

(
x

du
dx

)
+
(

x2 − n2
)

u = f (x) .

Then, dividing by x yields the Sturm-Liouville form:

d
dx

(
x

du
dx

)
+

(
x− n2

x

)
u =

f (x)
x

.

We therefore have that p = x, and q = x− n2/x. The forcing term if F(x) = f (x)/x.
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2. Given the two solutions u1, and u2, we showed in class that if we define the “Wron-
skian” according to

W = u1
du2

dx
− u2

du1

dx
,

then we have the following remarkable fact if u1 and u2 are homogeneous solutions
for the Sturm-Liouville operator:

W =
c
p

,

where p(x) is the function appearing in the Strum-Liouville operator and c is a con-
stant. In fact, c is actually defined by p(x)W(x). It is not at all obvious what c should
be in advance for an arbitrary problem. In this case, we have that c = 2π−1. But
c will take other values for other choices of u1 and u2, or for other Sturm-Liouville
operators.

The amazing thing about having c is that this means we can calculate

dv1

dx
= −Fu2

pW
= −Fu2

c
,

and
dv2

dx
=

Fu1

pW
=

Fu1

c
.

We can therefore integrate these expressions. Let’s choose the bounds of integration
to be at x = 1. We can choose them to be anywhere, but arbitrary choices will
lead to irritatingly large expressions for the constants that are needed to satisfy the
boundary conditions. Thus we have

v1(x) = −
∫ x

1

π f (z)Yn(z)
2z

dz + d1 ,

and

v2(x) =
∫ x

1

π f (z)Jn(z)
2z

dz + d2 ,

Where d1 and d2 are the constants we must determine using the boundary condi-
tions. The solution is then

u = v1u1 + v1u1 , (35)

= −Jn(x)
∫ x

1

π f (z)Yn(z)
2z

dz + d1 Jn(x) + Yn(x)
∫ x

1

π f (z)Jn(z)
2z

dz + d2Yn(x) .

(36)

The boundary condition u(1) = 0 implies that

0 = d1 Jn(1) + d2Yn(1) ,
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which implies that

d1 = −d2
Yn(1)
Jn(1)

.

Our expression for u is then

u = −Jn(x)
∫ x

1

π f (z)Yn(z)
2z

dz+Yn(x)
∫ x

1

π f (z)Jn(z)
2z

dz+
d2

Jn(1)

[
Jn(1)Yn(x)−Yn(1)Jn(x)

]
.

The condition at x = 2 implies that

Jn(2)
∫ 2

1

π f (z)Yn(z)
2z

dz−Yn(2)
∫ 2

1

π f (z)Jn(z)
2z

dz =
d2

Jn(1)

[
Jn(1)Yn(2)−Yn(1)Jn(2)

]
.

This is a long and annoying expression for d2, so let’s just write the solution as

u = −Jn(x)
∫ x

1

π f (z)Yn(z)
2z

dz+Yn(x)
∫ x

1

π f (z)Jn(z)
2z

dz+C
Jn(1)Yn(x)−Yn(1)Yn(x)
Jn(1)Yn(2)−Yn(1)Jn(2)

.

where

C def
= Jn(2)

∫ 2

1

π f (z)Yn(z)
2z

dz−Yn(2)
∫ 2

1

π f (z)Jn(z)
2z

dz .

The solution is massive and unwieldy, but it’s the solution nevertheless.
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