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Homework 6

Due June 3, 2015.

1 The convective heat equation. Heat conduction in the presence of a background flow
is governed by the equation

∂u
∂t

+ U
∂u
∂x

= κ
∂2u
∂x2 ,

where U is the background velocity. Consider an infinite domain with u→ 0 as x → ±∞
and u(x, 0) = f (x).

1. Solve this equation using the Fourier transform and express the solution in terms of
an integral of f (x) times an “influence function”. [Hint: use the convolution and shift
theorems from class.]

2. Solve for the initial condition f (x) = δ(x).

Solution.
1. Because U is the constant background velocity in this problem, we define the Fourier

transform with

û(ω, t) = F [u(x, t)] =
1

2π

∫ ∞

−∞
u(x, t)eiωx dx .

Note that derivatives transform under the rule

∂

∂x
→ −iω or F

[∂u
∂x

]
= −iωû and F

[∂2u
∂x2

]
= −ω2û .

The Fourier transform of the convective heat equation is

∂û
∂t
− iωUû + κω2û = 0 .

This is a first-order, constant-coefficient ODE in t for û,which has a solution of the
form û = Aekt. If we plug this into the equation we find k = −κω2 + iωU, and
therefore

û(ω, t) = A(ω)e−κω2t+iωUt .

The initial condition û(ω, t = 0) is found by taking the Fourier transform of the
initial condition on u, which implies that û(x, t = 0) = f̂ (ω), where f̂ = F [ f (x)].
Putting t = 0 into the above equation for û implies that A = f̂ , so that

û(ω, t) = f̂ (ω) e−κω2teiωUt .
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Notice that the solution for û involves multiplication by eiωU. We can use the shift
theorem for this part of û. The shift theorem implies that if

F−1[Ŵ(ω)] = W(x) ,

then
F−1[Ŵ(ω)eiβω] = W(x− β) .

Therefore if we define W(x) as

Ŵ(ω)
def
= f̂ (ω) e−κω2t ,

We have that
u(x, t) = F−1

[
Ŵ(ω)eiωUt

]
= W(x−Ut) .

The problem of finding u(x, t) thus boils down to finding the inverse transform of
Ŵ. Notice that Ŵ involves the product of two functions: therefore, we can use the
convolution theorem to evaluate W(x) in physical space. The convolution theorem
states that if Ĥ(ω) = F̂(ω)Ĝ(ω), then H(x), the inverse transform of Ĥ(ω), is given
by

H(x) =
1

2π

∫ ∞

−∞
F(ξ)G(x− ξ)dξ ,

where F(x) and G(x) are the inverse transforms of F̂(ω) and Ĝ(ω).

Above we defined Ŵ(ω) as Ŵ = f̂ e−κω2t. So one of the functions is f̂ (ω); the in-
verse transform is known and it is just the initial condition f (x). The other function
is e−κω2t – the Gaussian. The inverse transform of this function was done in class
and is also given in the book. We recapitulate these results here for completeness.
Define

ĝ(ω) = e−(νω)2
.

The inverse transform is then

g(x) =
∫ ∞

−∞
e−(νω)2−iωx dω . (1)

To calculate this integral we “complete the square”; that is, we observe that if we
define s = νω + c, we have

−s2 = − (νω + c)2 = −(νω)2 − 2cνω− c2 .

Because we can easily calculate the integral of e−s2
from −∞ < s < ∞, we are

strongly motivated to write the integral in terms of s. Notice that if c = ix/2ν we
have that 2cνω = iωx, and therefore

−
(

νω +
ix
2ν

)2

= −(νω)2 − iωx +
x2

4ν2 ,
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or, rearranging the terms,

−(νω)2 − iωx = −
(

νω +
ix
2ν

)2

− x2

4ν2 .

We can therefore put this into the inverse transform for g(x) to obtain

g(x) =
∫ ∞

−∞
e−x2/4ν2

e−(νω+ix/2ν)2
dω . (2)

We can now define s,

s def
= νω +

ix
2ν

, =⇒ ds
dω

= ν and thus dω = ν−1ds .

Notice that as ω → ±∞, with x and ν fixed, we still have that s → ±∞. So thank-
fully, the limits of the integral don’t change. Further, we can pull the factor e−x2/4ν2

out of integral, since it does not depend on ω. The result is that

g(x) = e−x2/4ν2
∫ ∞

−∞
e−(νω+ix/2ν)2

dω , (3)

= e−x2/4ν2
∫ ∞

−∞
e−s2

(
ν−1 ds

)
, (4)

=

√
π

ν
e−x2/4ν2

. (5)

In the final step, we have used the fact that
∫ ∞
−∞ e−s2

ds =
√

π. This important fact
should be memorized; and in the Appendix we prove it to be true.

In any case, we are now able to calculate the inverse transform of e−κtω2
. In the

above formula this corresponds to ν =
√

κt; thus we have

F
[
e−κtω2

]
=

√
π

κt
e−x2/4κt .

Finally, if we define G(x) =
√

π
κt e−x2/4κt, we have that

G(x− ξ) =

√
π

κt
e−(x−ξ)2/4κt ,

and the convolution theorem implies that

W(x) =
∫ ∞

−∞
f (ξ)

√
π

κt
e−(x−ξ)2/4κt dξ .

And the grand finale is that since u(x, t) = W(x−Ut), we then must have that

u(x, t) =
2
π

∫ ∞

−∞
f (ξ)

√
π

κt
e−(x−Ut−ξ)2/4κt dξ , (6)

=
2√
πκt

∫ ∞

−∞
f (ξ) e−(x−Ut−ξ)2/4κt dξ . (7)
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Note that we could also write this as

u(x, t) =
∫ ∞

−∞
f (x−Ut− ξ)

√
π

κt
e−ξ2/4κt dξ .

2. When f = δ(x), we can easily calculate the convolution integral. We find

u(x, t) =
2√
πκt

∫ ∞

−∞
δ(ξ) e−(x−Ut−ξ)2/4κt dξ , (8)

=
2√
πκt

e−(x−Ut)2/4κt . (9)

We could get the same result if we use f̂ (ω) = (2π)−1 and took the inverse trans-
form of the resulting expression for û. Below, the solution is plotted for κ = 0.4 and
U = 1 at a few different times to help you understand what this looks like. Basi-
cally, our equation describes an initially concentrated pulse of heat which is both
diffusing in space while being advected to the right by a steady wind.

x

-4 -2 0 2 4 6 8 10 12 14 16

u
(x
,
t)

0

0.5

1

1.5

2
t = 0

t = 1

t = 8

2 Steady heat conduction across a gap. Steady heat conduction in a two-dimensional
domain is governed by Laplace’s equation:

∂2u
∂x2 +

∂2u
∂y2 = 0 .

We consider a domain which runs from−∞ < x < ∞, but is bounded in y at 0 and L. The
boundary conditions in y are

∂u
∂y

(x, y = 0) = 0 , and
∂u
∂y

(x, y = H) = f (x) .

Answer the following:
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1. Use the Fourier transform of Laplace’s equation in x to obtain an ODE in y for
U(ω, y). Solve this equation.

2. Use the inverse Fourier transform to write the solution for u(x, y) as an integral over
ω.

3. Below, the solution is plotted for the boundary condition

f (x) =
{

1 for −1 < x < 1 ,
0 elsewhere.

for H = 0.2, H = 1, and H = 5. Argue why this makes sense given the form of the
integral you found for the previous question.

Solution.
1. We denote the x-Fourier transform of u(x, y) with U(ω, y) and the transform of f (x)

with F(ω). The transform of Laplace’s equation in x is then

∂2U
∂y2 −ω2U = 0 , with

∂U
∂y

(ω, y = 0) = 0 , and
∂U
∂y

(x, y = H) = F(ω) .
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The solution is exponentials. We write it in terms of cosh(ωy) for convenience. The
solution is

U(ω, y) = A cosh(ωy) + B sinh(ωy) ,

and the condition ∂U/∂y = 0 at y = 0 implies that B = 0. Satisfying the condition
at y = H implies that

F(ω) = A cosh(ωH) , so that A =
F(ω)

cosh(ωH)
,

and

U(ω, y) = F(ω)
cosh(ωy)
cosh(ωH)

.

This is the solution for U(ωy).

2. With U(ω, y) in hand, we can find u(x, y) with the inverse transform. We have

u(x, y) =
∫ ∞

−∞
F(ω)

cosh(ωy)
cosh(ωH)

e−iωx dω .

3. Observe in the above equation that when H is very large, this implies that

cosh(ωy)
cosh(ωH)

is extremely small except very close to y = H. Thus for large H – or H = 5 – the
solution decays rapidly away from the boundary at y = H. On the other hand,
when H is very small, we have

cosh(ωy)
cosh(ωH)

≈ 1

over the whole domain. When that is true, the solution for u(x, y) should basically
just look like f (x), which is exactly what we see for H = 0.2.

3 The wave equation and the Fourier transform. Consider the wave equation in an
infinite domain,

∂2u
∂t2 = c2 ∂2u

∂x2 ,

with initial conditions

u(x, 0) = f (x) , and
∂u
∂t

(x, 0) = 0 .

Answer the following:
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(a) Write down the Fourier transform of the wave equation in terms of U(ω, t). Notice
that the time-derivative transforms to

∂2U
∂t2 ,

while the x-derivative term can be tackled using the derivative rule proved in prob-
lem 1.

(b) To solve the time-dependent equation you also need the Fourier transform of the ini-
tial condition; denote this F(ω). Now, solve the equation for U(ω, t) and apply the
initial conditions. You should find an answer in terms of F(ω).

(c) Invert the transform to find the general solution for u(x, t). Hint: two hints will prove
useful. First, recall that cos(θ) can be written

cos(θ) = 1
2

(
e−iθ + eiθ

)
.

Next, define an intermediate variable z = x− ct...

Solution.
1. The Fourier transform of the wave equation is

∂2U
∂t2 + c2ω2U = 0 .

2. The Fourier transform of the initial condition is

U(ω, 0) = F(ω) , and
∂U
∂t

(x, 0) = 0 .

The solution for U is
U = a cos(cωt) + b sin(cωt) ,

and the condition ∂U/∂t = 0 at t = 0 implies that b = 0. The condition that U = F
at t = 0 implies that a = F, and the solution is

U(ω, t) = F(ω) cos(cωt) .

3. We use the trigonometric identity to write

cos(cωt) = 1
2

(
eicωt + e−icωt

)
.

We then have that

u(x, t) =
∫ ∞

−∞
U(ω, t)e−iωx dω , (10)

= 1
2

∫ ∞

−∞
F(ω)

(
e−iωxe−ictω + e−iωxe+ictω

)
dω (11)

= 1
2

∫ ∞

−∞
F(ω)e−iωxe−ictω dω + 1

2

∫ ∞

−∞
F(ω)e−iωxe+ictω dω , (12)

= 1
2 f (x− ct) + 1

2 f (x + ct) . (13)
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In the final step, we have used the shift theorem to evaluate the inverse transforms.
We could have also define intermediate variables ξ = x − ct and η = x + ct to do
this job.

4 Method of characteristics. Consider the wave equation

∂2u
∂t2 = c2 ∂2u

∂x2 ,

with the initial conditions

u(x, 0) = e−x2
, and

∂u
∂t

= 0 .

The initial condition is given below.

x
-5 0 5

f
(x
)

0

0.5

1

1.5

2

x
-5 0 5

f
(x
)

0

0.5

1

1.5

2

x
-5 0 5

f
(x
)

0

0.5

1

1.5

2

u
(x

,t
=

0) e�x2

Obtain the solution and sketch it at two later times.

Solution. The general solution to the wave equation obtained using the Method of
Characteristics is

u(x, t) = 1
2 f (x + ct) + 1

2 f (x− ct) +
∫ x+ct

x−ct
g(ξ)dξ ,

where f (x) and g(x) are given by the initial conditions,

u(x, t = 0) = f (x) , and
∂u
∂x

(x, t = 0) = g(x) .

Here, g = 0, and the solution is just

u(x, t) = 1
2e−(x−ct)2

+ 1
2e−(x+ct)2

.

The solution consists of two Gaussian pulses traveling to the left and right. The solution
is plotted at two later times below.
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x
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t = 0

ct = 1

ct = 10 ct = 10

5 The wave equation in spherical polar coordinates. Consider the wave equation

∂2u
∂t2 = c2∇2u ,

in three dimensions when the solution is spherically symmetric, so that

∇2u =
1
ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
.

Answer the following:

(a) Write u(ρ, t) = ρ−1w(ρ, t) and show that w(ρ, t) obeys the one-dimensional wave
equation.

(b) Hence solve for u(ρ, t) in the general case.

(c) Explain why the resulting solution corresponds to one outgoing and one incoming
wave.

Solution.
1. With u = ρ−1w, we find

∂u
∂ρ

= −ρ−2w + ρ−1 ∂w
∂ρ

.

We therefore find that
1
ρ2

∂

∂ρ

(
ρ2 ∂u

∂ρ

)
=

1
ρ2

∂

∂ρ

(
ρ2
[
−ρ−2w + ρ−1 ∂w

∂ρ

])
, (14)

=
1
ρ2

∂

∂ρ

(
−w + ρ

∂w
∂ρ

)
, (15)

=
1
ρ2

(
−∂w

∂ρ
+

∂w
∂ρ

+ ρ
∂2w
∂ρ2

)
, (16)

=
1
ρ

∂2w
∂ρ2 . (17)
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Meanwhile, because
∂2u
∂t2 =

1
ρ

∂2w
∂t2 ,

we find that because u satisfies

∂2u
∂t2 = c2 1

ρ2
∂

∂ρ

(
ρ2 ∂u

∂ρ

)
,

w must in turn satisfy
∂2w
∂t2 = c2 ∂2w

∂ρ2 .

2. It turns out that w satisfies the ordinary wave equation, and we know the solution
to the wave equation – it’s just

w(ρ, t) = F(ρ + ct) + G(ρ− ct) ,

where F and G are arbitrary functions determined by the initial conditions. There-
fore u(ρ, t) = ρ−1w(ρ, t) is given by

u(ρ, t) = ρ−1F(ρ + ct) + ρ−1G(ρ− ct) ,

where, again, F and G are arbitrary functions. In fact, if we had the conditions

u(ρ, 0) = f (ρ) , and
∂u
∂t

(ρ, 0) = g(ρ) ,

then we have for w that

w(ρ, 0) = ρ f (ρ) , and
∂w
∂t

(ρ, 0) = ρg(ρ) ,

Thus the general solution for w is

w(ρ, t) = 1
2(ρ + ct) f (ρ + ct) + 1

2(ρ− ct) f (ρ− ct) +
∫ ρ+ct

ρ−ct
ϕg(ϕ)dϕ ,

and therefore the general solution for u is

u(ρ, t) = 1
2(1 + ρ−1ct) f (ρ + ct) + 1

2(1− ρ−1ct) f (ρ− ct) + ρ−1
∫ ρ+ct

ρ−ct
ϕg(ϕ)dϕ ,

3. It is easy to see from the form of the solution given by

u(ρ, t) = ρ−1F(ρ + ct) + ρ−1G(ρ− ct) ,

that u consists of an “outgoing” wave – the G-part – and an “incoming wave”, the
F-part. The reason why G is outgoing is because as t increases, you’re going to find
the points at G(x) are found at larger and larger ρ. So G is translating away from
the center of the sphere. F is doing just the opposite, and is propagating inwards. In
addition to this propagation, the dependence on ρ−1 means that both solutions are
dilating and contracting according to the radius at which they are found.
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A The infinite integral of the Gaussian

It should be well known to everyone that∫ ∞

−∞
e−x2

dx =
√

π .

Note also that because e−x2
is symmetric about x = 0, this also implies that∫ ∞

0
e−x2

dx = 1
2

√
π .

This amazing fact is not at all obvious. We can prove it with a series steps involving
the square of an integral, which we then reinterpret as an integral over two-dimensional
Cartesian space, and then change into polar coordinates, which allows us to compute the
answer. Here they are:

I =

( ∫ ∞

−∞
e−x2

dx

)2

, (18)

=

( ∫ ∞

−∞
e−y2

dy

)( ∫ ∞

−∞
e−x2

dx

)
(19)

=
∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dx dy , (20)

= 2π
∫ ∞

0
e−r2

r dr , (21)

= 2π
[
− 1

2e−r2
]∞

0
(22)

= π . (23)

In one of the intermediate steps we have converted Cartesian coordinates in (x, y) to polar
coordinates in (r, θ), and evaluated the integral over θ (which is easy). The integral over
r can then be calculated because it is an exact derivative. Finally, we then notice that∫ ∞
−∞ e−x2

dx =
√

I =
√

π.
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