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Quiz I

1 Trigonometric integrals.

i) Using the given identity and the fact that sin(−a) = − sin(a), we find
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The integral I1 is then
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ii) Using the given identity, we find
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The integral I2 therefore becomes
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2 Steady states.

1. The units of H can be found from the boundary condition. We have

H =
−k ∂u

∂x
u− u0

,

=

[
WK−1m−1 ×Km−1

K

]
,

=

[
W

m2K

]
.

The units of H are Watts per degree Kelvin-meter2, since it is a ratio between a
temperature difference in Kelvin, and heat flux, which has units Watts per meter2.
H > 0 is required by physics: it means that a positive temperature difference be-
tween the end of the submersible at x = L, and the surrounding ocean, which is at
x > L, is associated with a flux of heat in the positive x-direction (recall heat flux is
−k ∂u

∂x ).

Another way to think about this is through a thought experiment. When u0 is very
cold, we expect that the temperature u is decreasing as x approaches L. If u is de-
creasing as x increases, this means ∂u/∂x < 0. Thus, both −k∂u/∂x and u− u0 are
positive, which implies that H is positive as well.

Note that this argument depends on the fact that, at x = L, a flux out of the sub-
mersible implies that−k∂u/∂x > 0. The opposite is true for the end at x = 0.

2. When u is not a function of t, the heat equation reduces to

0 =
d2u
dx2 .

The solution is
u = Ax + B ,

where A and B are undetermined constants. Note that du/dx = A. This enables us
to apply the boundary condition at x = 0, giving

−F
k
= A .

Therefore u = −Fx/k + B. We use this to calculate u at x = L, and find

u(x = L) = −FL
k

+ B .

Putting this into the boundary condition at x = L implies

F = H
(
−FL

k
+ B− u0

)
,
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and solving for B yields

B =
F
H

+ u0 +
FL
k

.

The total solution is then

u(x) =
F
k
(L− x) + u0 +

F
H

.

3. As H → 0, we find that the temperature blows up, or that u → ∞. This is unphysi-
cal. Recall that to find the above solution, we assumed that u was not a function of
t – in other words, we assumed that a steady-state solution exists. However, when
H → 0, the boundary condition at x = L becomes that of an insulator, or limits to

−k
∂u
∂x

= 0 .

In this case, we are fluxing heat in at x = 0, but not allowing it to escape at x =
L. The consequence is that the solution increases in time, and there is no steady
solution.

3 Separation of variables.

1. The steady-state solution is T = 0.

2. Substituting u(x, t) = f (x)g(t) into the governing equation yields

f
dg
dt

= Dg
d2 f
dx2 .

Next we divide by D f g. This yields

1
Dg

dg
dt︸ ︷︷ ︸

function of t only

=
1
f

d2 f
dx2︸ ︷︷ ︸

function of x only

= −λ .

Since both right and left are functions of either t or x, they cannot be equal to each
other unless they equal a constant, which we denote −λ. We then obtain the ODEs

1
Dg

dg
dt

= −λ =⇒ dg
dt

+ λDg = 0 ,

and
1
f

d2 f
dx2 = −λ =⇒ d2 f

dx2 + λ f = 0 .
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3. The function g(t) obeys
dg
dt

+ λDg = 0 .

This is a linear first-order ordinary differential equation, with exponential solutions.
The solution is

g(t) = Ae−λDt ,

where both A and λ are undetermined at this point.

4. The boundary conditions on f (x) follow from the boundary conditions on u(x, t).
The boundary condition at x = 0 is

u(x = 0, t) = f (x = 0)g(t) = 0 .

Since g(t) is not zero in general, this implies that f (x = 0) = 0. At x = L we have

∂u
∂x

(x = L, t) = g(t)
d f
dx

(x = 0) = 0 .

Again, g(t) does not equal zero in general, so d f /dx(x = L) = 0. In summary, the
two conditions on f (x) are

f (x = 0) = 0 and
d f
dx

(x = L) = 0 .

5. The function f (x) obeys the equation

d2 f
dx2 + λ f = 0 ,

with boundary conditions given above. If λ ≤ 0, the only solution is f = 0, the
trivial solution. This does not satisfy the initial condition, so we must have λ > 0.
In this case the solutions can be written

f (x) = B sin
(√

λx
)
+ C cos

(√
λx
)

.

The condition f (x = 0) = 0 implies that C = 0. The condition at x = L implies that

√
λB cos

(√
λL
)
= 0 .

Either λ = 0 or B = 0 implies that f = 0, the trivial solution. Thus we conclude that
λ must take values such that

cos
(√

λL
)
= 0 .

This happens with

√
λL = π

(
n− 1

2

)
, for n = 1, 2, 3, · · · ,
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which implies that

λn =
[π

L

(
n− 1

2

)]2
for n = 1, 2, 3, · · · .

To solve the initial condition, we note that there are an infinite number of solutions,
each corresponding to a particular value of λn, and thus a particular un = fngn. The
general solution is the sum of all these solutions, which is

u(x, t) =
∞

∑
n=1

Bn sin
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2)x
)
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2)
)

t
}

.

To find the coefficients Bn, we use the initial condition. Taking t = 0, the initial
condition implies that

u0 sin
(πx

L

)
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∞

∑
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)

.

The coefficients Bn are then found by multiplying this equation by

sin
(π

L
(m− 1

2)x
)

,

and integrating from 0 to L. Because of the properties of trigonometric integrals, all
of the terms in the sum integrate to 0, except one, when n = m. We thus find that
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2
L

∫ L

0
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)

.

This is the formula for the coefficients Bm. Using the trigonometric identity

sin(a) sin(b) = 1
2 [cos(a− b)− cos(a + b)] ,

we find
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π
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+

1
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)
.

The final solution is then
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