Quiz I

1 Trigonometric integrals.

i) Using the given identity and the fact that $\sin (-a)=-\sin (a)$, we find

$$
\begin{aligned}
\sin \left(\frac{\pi x}{L}\right) \cos \left(\frac{3 \pi x}{L}\right) & =\frac{1}{2} \sin \left(\frac{4 \pi x}{L}\right)+\frac{1}{2} \sin \left(-\frac{2 \pi x}{L}\right), \\
& =\frac{1}{2} \sin \left(\frac{4 \pi x}{L}\right)-\frac{1}{2} \sin \left(\frac{2 \pi x}{L}\right) .
\end{aligned}
$$

The integral I_{1} is then

$$
\begin{aligned}
I_{1} & =\int_{0}^{L} \sin \left(\frac{\pi x}{L}\right) \cos \left(\frac{3 \pi x}{L}\right) \mathrm{d} x \\
& =\frac{1}{2} \int_{0}^{L} \sin \left(\frac{4 \pi x}{L}\right)-\sin \left(\frac{2 \pi x}{L}\right) \mathrm{d} x \\
& =\frac{1}{2}\left[-\frac{L}{4 \pi} \cos \left(\frac{4 \pi x}{L}\right)+\frac{L}{\pi} \cos \left(\frac{2 \pi x}{L}\right)\right]_{0}^{L} \\
& =0
\end{aligned}
$$

ii) Using the given identity, we find

$$
\cos ^{2}\left(\frac{6 \pi x}{L}\right)=\frac{1}{2}+\frac{1}{2} \cos \left(\frac{12 \pi x}{L}\right) .
$$

The integral I_{2} therefore becomes

$$
\begin{aligned}
I_{2} & =\int_{0}^{L} \cos ^{2}\left(\frac{6 \pi x}{L}\right) \mathrm{d} x \\
& =\frac{1}{2} \int_{0}^{L} 1+\cos \left(\frac{12 \pi x}{L}\right) \mathrm{d} x \\
& =\frac{1}{2}\left[x+\frac{L}{12 \pi} \sin \left(\frac{12 \pi x}{L}\right)\right]_{0}^{L}, \\
& =\frac{L}{2}
\end{aligned}
$$

2 Steady states.

1. The units of H can be found from the boundary condition. We have

$$
\begin{aligned}
H & =\frac{-k \frac{\partial u}{\partial x}}{u-u_{0}} \\
& =\left[\frac{\mathrm{WK}^{-1} \mathrm{~m}^{-1} \times \mathrm{Km}^{-1}}{\mathrm{~K}}\right] \\
& =\left[\frac{\mathrm{W}}{\mathrm{~m}^{2} \mathrm{~K}}\right]
\end{aligned}
$$

The units of H are Watts per degree Kelvin-meter ${ }^{2}$, since it is a ratio between a temperature difference in Kelvin, and heat flux, which has units Watts per meter ${ }^{2}$. $H>0$ is required by physics: it means that a positive temperature difference between the end of the submersible at $x=L$, and the surrounding ocean, which is at $x>L$, is associated with a flux of heat in the positive x-direction (recall heat flux is $\left.-k \frac{\partial u}{\partial x}\right)$.
Another way to think about this is through a thought experiment. When u_{0} is very cold, we expect that the temperature u is decreasing as x approaches L. If u is decreasing as x increases, this means $\partial u / \partial x<0$. Thus, both $-k \partial u / \partial x$ and $u-u_{0}$ are positive, which implies that H is positive as well.
Note that this argument depends on the fact that, at $x=L$, a flux out of the submersible implies that $-k \partial u / \partial x>0$. The opposite is true for the end at $x=0$.
2. When u is not a function of t, the heat equation reduces to

$$
0=\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}
$$

The solution is

$$
u=A x+B
$$

where A and B are undetermined constants. Note that $\mathrm{d} u / \mathrm{d} x=A$. This enables us to apply the boundary condition at $x=0$, giving

$$
-\frac{F}{k}=A
$$

Therefore $u=-F x / k+B$. We use this to calculate u at $x=L$, and find

$$
u(x=L)=-\frac{F L}{k}+B
$$

Putting this into the boundary condition at $x=L$ implies

$$
F=H\left(-\frac{F L}{k}+B-u_{0}\right)
$$

and solving for B yields

$$
B=\frac{F}{H}+u_{0}+\frac{F L}{k} .
$$

The total solution is then

$$
u(x)=\frac{F}{k}(L-x)+u_{0}+\frac{F}{H} .
$$

3. As $H \rightarrow 0$, we find that the temperature blows up, or that $u \rightarrow \infty$. This is unphysical. Recall that to find the above solution, we assumed that u was not a function of t - in other words, we assumed that a steady-state solution exists. However, when $H \rightarrow 0$, the boundary condition at $x=L$ becomes that of an insulator, or limits to

$$
-k \frac{\partial u}{\partial x}=0 .
$$

In this case, we are fluxing heat in at $x=0$, but not allowing it to escape at $x=$ L. The consequence is that the solution increases in time, and there is no steady solution.

3 Separation of variables.

1. The steady-state solution is $T=0$.
2. Substituting $u(x, t)=f(x) g(t)$ into the governing equation yields

$$
f \frac{\mathrm{~d} g}{\mathrm{~d} t}=D g \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}
$$

Next we divide by $D f g$. This yields

$$
\underbrace{\frac{1}{D g} \frac{\mathrm{~d} g}{\mathrm{~d} t}}_{\text {function of } t \text { only }}=\underbrace{\frac{1}{f} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}}_{\text {function of } x \text { only }}=-\lambda .
$$

Since both right and left are functions of either t or x, they cannot be equal to each other unless they equal a constant, which we denote $-\lambda$. We then obtain the ODEs

$$
\frac{1}{D g} \frac{\mathrm{~d} g}{\mathrm{~d} t}=-\lambda \quad \Longrightarrow \quad \frac{\mathrm{d} g}{\mathrm{~d} t}+\lambda D g=0
$$

and

$$
\frac{1}{f} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}=-\lambda \quad \Longrightarrow \quad \frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+\lambda f=0
$$

3. The function $g(t)$ obeys

$$
\frac{\mathrm{d} g}{\mathrm{~d} t}+\lambda D g=0
$$

This is a linear first-order ordinary differential equation, with exponential solutions. The solution is

$$
g(t)=A \mathrm{e}^{-\lambda D t}
$$

where both A and λ are undetermined at this point.
4. The boundary conditions on $f(x)$ follow from the boundary conditions on $u(x, t)$. The boundary condition at $x=0$ is

$$
u(x=0, t)=f(x=0) g(t)=0
$$

Since $g(t)$ is not zero in general, this implies that $f(x=0)=0$. At $x=L$ we have

$$
\frac{\partial u}{\partial x}(x=L, t)=g(t) \frac{\mathrm{d} f}{\mathrm{~d} x}(x=0)=0 .
$$

Again, $g(t)$ does not equal zero in general, so $\mathrm{d} f / \mathrm{d} x(x=L)=0$. In summary, the two conditions on $f(x)$ are

$$
f(x=0)=0 \quad \text { and } \quad \frac{\mathrm{d} f}{\mathrm{~d} x}(x=L)=0
$$

5. The function $f(x)$ obeys the equation

$$
\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+\lambda f=0
$$

with boundary conditions given above. If $\lambda \leq 0$, the only solution is $f=0$, the trivial solution. This does not satisfy the initial condition, so we must have $\lambda>0$. In this case the solutions can be written

$$
f(x)=B \sin (\sqrt{\lambda} x)+C \cos (\sqrt{\lambda} x)
$$

The condition $f(x=0)=0$ implies that $C=0$. The condition at $x=L$ implies that

$$
\sqrt{\lambda} B \cos (\sqrt{\lambda} L)=0
$$

Either $\lambda=0$ or $B=0$ implies that $f=0$, the trivial solution. Thus we conclude that λ must take values such that

$$
\cos (\sqrt{\lambda} L)=0
$$

This happens with

$$
\sqrt{\lambda} L=\pi\left(n-\frac{1}{2}\right), \quad \text { for } \quad n=1,2,3, \cdots
$$

which implies that

$$
\lambda_{n}=\left[\frac{\pi}{L}\left(n-\frac{1}{2}\right)\right]^{2} \quad \text { for } \quad n=1,2,3, \cdots
$$

To solve the initial condition, we note that there are an infinite number of solutions, each corresponding to a particular value of λ_{n}, and thus a particular $u_{n}=f_{n} g_{n}$. The general solution is the sum of all these solutions, which is

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{\pi}{L}\left(n-\frac{1}{2}\right) x\right) \exp \left\{-D\left(\frac{\pi}{L}\left(n-\frac{1}{2}\right)\right) t\right\}
$$

To find the coefficients B_{n}, we use the initial condition. Taking $t=0$, the initial condition implies that

$$
u_{0} \sin \left(\frac{\pi x}{L}\right)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{\pi}{L}\left(n-\frac{1}{2}\right) x\right)
$$

The coefficients B_{n} are then found by multiplying this equation by

$$
\sin \left(\frac{\pi}{L}\left(m-\frac{1}{2}\right) x\right)
$$

and integrating from 0 to L. Because of the properties of trigonometric integrals, all of the terms in the sum integrate to 0 , except one, when $n=m$. We thus find that

$$
B_{m}=\frac{2}{L} \int_{0}^{L} u_{0} \sin \left(\frac{\pi x}{L}\right) \sin \left(\frac{\pi}{L}\left(m-\frac{1}{2}\right) x\right) .
$$

This is the formula for the coefficients B_{m}. Using the trigonometric identity

$$
\sin (a) \sin (b)=\frac{1}{2}[\cos (a-b)-\cos (a+b)]
$$

we find

$$
B_{m}=\frac{u_{0}(-1)^{m}}{\pi}\left(\frac{1}{m-3 / 2}+\frac{1}{m+1 / 2}\right)
$$

The final solution is then

$$
u(x, t)=\frac{u_{0}}{\pi} \sum_{n=1}^{\infty}\left(\frac{(-1)^{m}}{m-3 / 2}+\frac{(-1)^{m}}{m+1 / 2}\right) \sin \left(\frac{\pi}{L}\left(n-\frac{1}{2}\right) x\right) \exp \left\{-D\left(\frac{\pi}{L}\left(n-\frac{1}{2}\right)\right) t\right\}
$$

