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Quizl

1 Trigonometric integrals.

i) Using the given identity and the fact that sin(—a) = —sin(a), we find
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The integral I; is then
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ii) Using the given identity, we find
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The integral I, therefore becomes
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2 Steady states.

1. The units of H can be found from the boundary condition. We have
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The units of H are Watts per degree Kelvin-meter?, since it is a ratio between a
temperature difference in Kelvin, and heat flux, which has units Watts per meter?.
H > 0 is required by physics: it means that a positive temperature difference be-
tween the end of the submersible at x = L, and the surrounding ocean, which is at
x > L, is associated with a flux of heat in the positive x-direction (recall heat flux is
—k3L).

Another way to think about this is through a thought experiment. When u is very
cold, we expect that the temperature u is decreasing as x approaches L. If u is de-
creasing as x increases, this means du/dx < 0. Thus, both —kdu/dx and u — ug are
positive, which implies that H is positive as well.

Note that this argument depends on the fact that, at x = L, a flux out of the sub-
mersible implies that—kdu /dx > 0. The opposite is true for the end at x = 0.

2. When u is not a function of ¢, the heat equation reduces to
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The solution is
u—Ax+B,

where A and B are undetermined constants. Note that du/dx = A. This enables us
to apply the boundary condition at x = 0, giving
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Therefore u = —Fx/k + B. We use this to calculate u at x = L, and find
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Putting this into the boundary condition at x = L implies
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and solving for B yields
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The total solution is then
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3. As H — 0, we find that the temperature blows up, or that u — co. This is unphysi-
cal. Recall that to find the above solution, we assumed that # was not a function of
t —in other words, we assumed that a steady-state solution exists. However, when
H — 0, the boundary condition at x = L becomes that of an insulator, or limits to
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In this case, we are fluxing heat in at x = 0, but not allowing it to escape at x =
L. The consequence is that the solution increases in time, and there is no steady
solution.

3 Separation of variables.
1. The steady-state solutionis T = 0.
2. Substituting u(x, t) = f(x)g(t) into the governing equation yields
d’f
dt gdx2 '
Next we divide by D fg. This yields
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Since both right and left are functions of either t or x, they cannot be equal to each
other unless they equal a constant, which we denote —A. We then obtain the ODEs
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3. The function g(t) obeys
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This is a linear first-order ordinary differential equation, with exponential solutions.
The solution is
g(t) = Ae™Pt,

where both A and A are undetermined at this point.

4. The boundary conditions on f(x) follow from the boundary conditions on u(x, t).
The boundary condition at x = 0 is

u(x=0,t) = f(x =0)g(t) =0.
Since g(t) is not zero in general, this implies that f(x = 0) = 0. At x = L we have
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Again, g(t) does not equal zero in general, so df /dx(x = L) = 0. In summary, the

two conditions on f(x) are

f(x=0)=0 and j—i(x:L)zo.

5. The function f(x) obeys the equation
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with boundary conditions given above. If A < 0, the only solution is f = 0, the
trivial solution. This does not satisfy the initial condition, so we must have A > 0.
In this case the solutions can be written

f(x) = Bsin <\/Xx) + Ccos (\/Xx) :
The condition f(x = 0) = 0 implies that C = 0. The condition at x = L implies that

V/AB cos (\/XL> =0.

Either A = 0 or B = 0 implies that f = 0, the trivial solution. Thus we conclude that
A must take values such that
cos (\/XL> =0.

This happens with



which implies that

Ay = [% <n—%>]2 for n=123,---.

To solve the initial condition, we note that there are an infinite number of solutions,
each corresponding to a particular value of A;;, and thus a particular u, = f,g,. The
general solution is the sum of all these solutions, which is

u(x,t) = iBn sin (%(n - %)x) exp {—D (%(n — %)) t} :

To find the coefficients B, we use the initial condition. Taking t = 0, the initial
condition implies that

ug sin (%) = ian sin (%(n - %)x) :
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The coefficients B, are then found by multiplying this equation by

sin (%(m - %)x) ,

and integrating from 0 to L. Because of the properties of trigonometric integrals, all
of the terms in the sum integrate to 0, except one, when n = m. We thus find that

By = %/OL up sin (%) sin (%(m — %)x) .

This is the formula for the coefficients B;,. Using the trigonometric identity
sin(a) sin(b) = 3 [cos(a — b) — cos(a +b)] ,
we find do(—1)" ) )
Bm = T <m—3/2+m+1/2>'

The final solution is then

u(x,t) = u—f? i (ng__lg)fz + 11§_+11)TZ> sin (%(n - %)x) exp {—D (%(n — %)) t} .
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