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Quiz 2

1 Fourier series (10 points)

(a) From the expression for the exponential form of the Fourier series over the interval
(−π, π)

f (x) =
∞

∑
n=−∞

cneinx ,

find the expression for cn as an integral involving f (x).

(b) Now consider the following function:

f (x) =
{

1 for − π < x < 0,
e−ax for 0 < x < π .

Find the complex coefficients cn for the Fourier series of f (x).

(c) Explain what happens in the limits a→ 0 and a→ ∞.
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2 Sturm–Liouville theory (5 points). The below figure plots the first three eigenfunc-
tions which solve differential equations “A”, “B”, and “C”. From the form of the eigen-
functions and the eigenvalues, determine whether the underlying differential equation
can be a regular Sturm–Liouville problem. Give your reasons (one line per case should
be enough).
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Problem 2. Eigenfunctions for three differential equations labeled A, B, and C.
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3 Laplace in an annulus (10 points). Consider Laplace’s equation in an annulus. The
annulus has an inner radius of 1 and and outer radius of 2; a sketch of the annulus domain
is given below. Laplace’s equation in polar coordinates is

1
r

∂

∂r

(
r

∂u
∂r

)
+

1
r2

∂2u
∂θ2 = 0 .

The boundary conditions are

u(r = 1, θ) = 0 and u(r = 2, θ) = ln 2 .

r
✓

r = 2

r = 1
u(r = 1, ✓) = 0

u(r = 2, ✓) = ln 2

r2u = 0

Answer the following:

(a) Use separation of variables to find the general solution u(r, θ).

(b) Find the solution which satisfies the boundary conditions at r = 1 and r = 2.

(c) If u is temperature, the total heat flux flowing toward the origin at radius r is

Q(r) =
∫ 2π

0
q(r, θ)r dθ ,

where
q(r, θ) = k

∂u
∂r

is the inward heat flux density (the flux in the negative r-direction). Determine Q(r =
2) and Q(r = 1). What do you observe? How could you have predicted this from the
governing problem without computing the integrals?
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