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Quiz 3

1 Green’s functions (10 points). Consider the inhomogeneous differential equation

(1 + x2)y′′ = f (x) , with y(0) = 0 and y(1) = 0 .

1. Write down the equation satisfied by the Green’s function G(x, z) for this problem.

2. Find the “jump condition” satisfied by G′(x, z) at x = z.

3. The Green’s function is

G(x, z) =





x(z− 1)
1 + z2 for x < z

z(x− 1)
1 + z2 for x > z

Verify this satisfies the appropriate boundary conditions and conditions at x = z.

4. Write down the general solution for y(x) in terms of two integrals. [Hint: be very
clear about which variable is the variable of integration as well as its range in each integral.]
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2 Fourier transforms (5 points). Three Fourier transforms are marked (d), (e), and (f)
below. Match each of these transforms to the correct physical space function:

(a) f (x) = δ(x)

(b) f (x) = e−x2
.

(c) f (x) =
{

1 −1 < x < 1
0 otherwise
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3 Multidimensional partial differential equations (10 points). Ponder for a moment
the vibrations of a square drum modelled by the displacement of an elastic square mem-
brane with corners at (0, 0), (L, 0), (0, L) and (L, L). The displacement of the membrane
is governed by the wave equation,

∂2u
∂t2 = c2

(
∂2u
∂x2 +

∂2u
∂y2

)
.

The membrane is held taut around its edge, so that

u(0, y, t) = u(L, y, t) = u(x, 0, t) = u(x, L, t) = 0 .

We assume that, initially, the membrane has some finite displacement, but zero velocity,
so that

u(x, y, 0) = φ(x, y) , and
∂u
∂t

(x, y, 0) = 0 .

1. Separate variables by assuming that u = S(x, y)g(t), propose a separation variable
κ2, and solve the t-equation in terms of c and κ. Make sure you account for the
zero-velocity initial condition. What is the physical meaning of the product κc?

2. The solutions for S(x, y) are

S(x, y) = Anm sin
(nπx

L

)
sin
(mπy

L

)
,

where κ is found to be

κnm =

√(nπ

L

)2
+
(mπ

L

)2
,

and both n and m go from 1 to +∞. Explain in a few lines how one would derive
this result.

3. What are the lowest three frequencies of the elastic membrane?
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