Quiz 3

1 Green's functions ($\mathbf{1 0}$ points). Consider the inhomogeneous differential equation

$$
\left(1+x^{2}\right) y^{\prime \prime}=f(x), \quad \text { with } \quad y(0)=0 \quad \text { and } \quad y(1)=0
$$

1. Write down the equation satisfied by the Green's function $G(x, z)$ for this problem.
2. Find the "jump condition" satisfied by $G^{\prime}(x, z)$ at $x=z$.
3. The Green's function is

$$
G(x, z)=\left\{\begin{array}{lll}
\frac{x(z-1)}{1+z^{2}} & \text { for } & x<z \\
\frac{z(x-1)}{1+z^{2}} & \text { for } & x>z
\end{array}\right.
$$

Verify this satisfies the appropriate boundary conditions and conditions at $x=z$.
4. Write down the general solution for $y(x)$ in terms of two integrals. [Hint: be very clear about which variable is the variable of integration as well as its range in each integral.]

2 Fourier transforms (5 points). Three Fourier transforms are marked (d), (e), and (f) below. Match each of these transforms to the correct physical space function:
(a) $f(x)=\delta(x)$
(b) $f(x)=\mathrm{e}^{-x^{2}}$.
(c) $f(x)=\left\{\begin{array}{cc}1 & -1<x<1 \\ 0 & \text { otherwise }\end{array}\right.$

Fourier space

(e)

physical space

3 Multidimensional partial differential equations (10 points). Ponder for a moment the vibrations of a square drum modelled by the displacement of an elastic square membrane with corners at $(0,0),(L, 0),(0, L)$ and (L, L). The displacement of the membrane is governed by the wave equation,

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

The membrane is held taut around its edge, so that

$$
u(0, y, t)=u(L, y, t)=u(x, 0, t)=u(x, L, t)=0
$$

We assume that, initially, the membrane has some finite displacement, but zero velocity, so that

$$
u(x, y, 0)=\phi(x, y), \quad \text { and } \quad \frac{\partial u}{\partial t}(x, y, 0)=0
$$

1. Separate variables by assuming that $u=S(x, y) g(t)$, propose a separation variable κ^{2}, and solve the t-equation in terms of c and κ. Make sure you account for the zero-velocity initial condition. What is the physical meaning of the product κc ?
2. The solutions for $S(x, y)$ are

$$
S(x, y)=A_{n m} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{L}\right)
$$

where κ is found to be

$$
\kappa_{n m}=\sqrt{\left(\frac{n \pi}{L}\right)^{2}+\left(\frac{m \pi}{L}\right)^{2}}
$$

and both n and m go from 1 to $+\infty$. Explain in a few lines how one would derive this result.
3. What are the lowest three frequencies of the elastic membrane?

