Quiz 3 Solutions

1 Green's functions (10 points). Consider the inhomogeneous differential equation

$$
\left(1+x^{2}\right) y^{\prime \prime}=f(x), \quad \text { with } \quad y(0)=0 \quad \text { and } \quad y(1)=0
$$

1. Write down the equation satisfied by the Green's function $G(x, z)$ for this problem.
2. Find the "jump condition" satisfied by $G^{\prime}(x, z)$ at $x=z$.
3. The Green's function is

$$
G(x, z)=\left\{\begin{array}{lll}
\frac{x(z-1)}{1+z^{2}} & \text { for } & x<z \\
\frac{z(x-1)}{1+z^{2}} & \text { for } & x>z
\end{array}\right.
$$

Verify this satisfies the appropriate boundary conditions and conditions at $x=z$.
4. Write down the general solution for $y(x)$ in terms of two integrals. [Hint: be very clear about which variable is the variable of integration as well as its range in each integral.]

Solution.

1. The Green's function satisfies

$$
\left(1+x^{2}\right) G^{\prime \prime}=\delta(x-z), \quad \text { with } \quad G(0)=0 \quad \text { and } \quad G(1)=0
$$

2. The jump condition is found by integrating the equation from 1 over a small neighborhood surrounding z. The easiest way is to divide by $1+x^{2}$. Then we have

$$
G^{\prime \prime}=\frac{\delta(x-z)}{1+x^{2}}
$$

and integration yields

$$
G^{\prime}\left(z^{+}\right)-G^{\prime}\left(z^{-}\right)=\frac{1}{1+z^{2}} .
$$

Another way is to integrate

$$
\left(1+x^{2}\right) G^{\prime \prime}=\delta(x-z)
$$

If we do this we need to integrate by parts to find
$\lim _{\epsilon \rightarrow 0} \int_{z-\epsilon}^{z+\epsilon}\left(1+x^{2}\right) G^{\prime \prime} \mathrm{d} x=\int_{z-\epsilon}^{z+\epsilon} \frac{\mathrm{d}}{\mathrm{d} x}\left[\left(1+x^{2}\right) G^{\prime}\right]-2 x G^{\prime \prime} \mathrm{d} x=\left(1+z^{2}\right)\left[G^{\prime}\left(z^{+}\right)-G^{\prime}\left(z^{-}\right)\right]$.
This yields the same jump condition as above, since $\int_{z-\epsilon}^{z+\epsilon} \delta(x-z) \mathrm{d} x=1$, and so

$$
G^{\prime}\left(z^{+}\right)-G^{\prime}\left(z^{-}\right)=\frac{1}{1+z^{2}}
$$

3. At $x=0$ we use the Green's function valid for $x<z$, which is

$$
G(0, z)=\left.\frac{x(z-1)}{1+z^{2}}\right|_{x=0}=0
$$

since the whole thing is multiplied by x. At $x=1$,

$$
G(1, z)=\left.\frac{z(x-1)}{1+z^{2}}\right|_{x=1}=0
$$

since $x-1=0$ at $x=1$. At $x=z$, both halves of the Green's function are equal to

$$
\frac{z(z-1)}{1+z^{2}}
$$

The derivative of the Green's function is

$$
G^{\prime}(x, z)=\left\{\begin{array}{lll}
\frac{z-1}{1+z^{2}} & \text { for } & x<z \\
\frac{z}{1+z^{2}} & \text { for } & x>z
\end{array}\right.
$$

Thus we find

$$
G^{\prime}\left(z^{+}\right)-G^{\prime}\left(z^{-}\right)=\frac{z}{1+z^{2}}-\frac{z-1}{1+z^{2}}=\frac{1}{1+z^{2}}
$$

and all the conditions are satisfied.
4. The general solution for $y(x)$ is

$$
\begin{align*}
y(x) & =\int_{0}^{1} f(z) G(x, z) \mathrm{d} z \tag{1}\\
& =\underbrace{\int_{0}^{x} f(z) G(x>z, z) \mathrm{d} z}_{\text {use } G \text { for } z<x}+\underbrace{\int_{x}^{z} f(z) G(x<z, z) \mathrm{d} z}_{\text {use } G \text { for } z>x} \tag{2}\\
& =(x-1) \int_{0}^{x} f(z) \frac{z}{1+z^{2}} \mathrm{~d} z+x \int_{x}^{1} f(z) \frac{z-1}{1+z^{2}} \mathrm{~d} z \tag{3}
\end{align*}
$$

2 Fourier transforms (5 points). Three Fourier transforms are marked (d), (e), and (f) below. Match each of these transforms to the correct physical space function:
(a) $f(x)=\delta(x)$
(b) $f(x)=\mathrm{e}^{-x^{2}}$.
(c) $f(x)=\left\{\begin{array}{cc}1 & -1<x<1 \\ 0 & \text { otherwise }\end{array}\right.$

Fourier space

physical space

Solution. Note that the letters (a, b, c) on the figures do not correspond to the letters in the problem write up. Unfortunately.

The solution is

$$
\begin{align*}
(d) & \rightarrow \delta(x) \quad(\mathrm{a}) \tag{4}\\
(e) & \rightarrow \mathrm{e}^{-x^{2}} \quad(\mathrm{~b}) \tag{5}\\
(f) & \rightarrow \text { square pulse } \quad(\mathrm{c}) . \tag{6}
\end{align*}
$$

3 Multidimensional partial differential equations (10 points). Ponder for a moment the vibrations of a square drum modelled by the displacement of an elastic square membrane with corners at $(0,0),(L, 0),(0, L)$ and (L, L). The displacement of the membrane is governed by the wave equation,

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

The membrane is held taut around its edge, so that

$$
u(0, y, t)=u(L, y, t)=u(x, 0, t)=u(x, L, t)=0
$$

We assume that, initially, the membrane has some finite displacement, but zero velocity, so that

$$
u(x, y, 0)=\phi(x, y), \quad \text { and } \quad \frac{\partial u}{\partial t}(x, y, 0)=0
$$

1. Separate variables by assuming that $u=S(x, y) g(t)$, propose a separation variable κ^{2}, and solve the t-equation in terms of c and κ. Make sure you account for the zero-velocity initial condition. What is the physical meaning of the product κc ?
2. The solutions for $S(x, y)$ are

$$
S(x, y)=A_{n m} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi y}{L}\right)
$$

where κ is found to be

$$
\kappa_{n m}=\sqrt{\left(\frac{n \pi}{L}\right)^{2}+\left(\frac{m \pi}{L}\right)^{2}}
$$

and both n and m go from 1 to $+\infty$. Explain in a few lines how one would derive this result.
3. What are the lowest three frequencies of the elastic membrane?

Solution.

1. Substituting $u=S(x, y) g(t)$, dividing by $c^{2} S g$, and defining a separation constant κ^{2} yields

$$
\frac{g^{\prime \prime}}{c^{2} g}=\frac{\nabla^{2} S}{S}=-\kappa^{2}
$$

The t-equation is

$$
g^{\prime \prime}+(c k)^{2} g=0
$$

and the general solution is

$$
g=A \sin (\kappa c t)+B \cos (\kappa c t)
$$

Since at $t=0$ we have

$$
\frac{\partial u}{\partial t}=0
$$

This means that $A=0$, and the solution to the t-equation is

$$
g=B \cos (\kappa c t) .
$$

The product κc is the oscillation frequency of the mode corresponding to κ. Note that κ has units of $1 /$ length, and c has units of length/time, so that κc has units 1 /time.
2. The result for S is found by forming the (x, y)-equation,

$$
\frac{\partial^{2} S}{\partial x^{2}}+\frac{\partial^{2} S}{\partial y^{2}}+\kappa S=0
$$

separating variables, defining a new separation constant, and solving each equation for x and y separately. Both x and y-equations are eigenproblems which are each associate with an infinite sum of eigenvalues; this leads to a doubly-infinite sum of solutions for $S(x, y)$, each associated with a particular value of $\kappa_{n m}$.
3. Because the spatial modes are sines, the smallest values of n and m are $n=m=1$; and the smallest values of n and m correspond to the smallest values of κ and therefore the smallest values of κc, the eigenfrequencies of the membrane. The lowest frequency is associated with $n=m=1$, and the next two greater frequencies have $n=1, m=2$ and $n=2, m=1$. Thus the lowest three frequencies are

$$
\kappa c=\left(\frac{c \pi \sqrt{2}}{L}, \frac{c \pi \sqrt{5}}{L}, \frac{c \pi \sqrt{5}}{L}\right) .
$$

