
MAE105 Introduction to Mathematical Physics Spring Quarter 2015
http://web.eng.ucsd.edu/~sgls/MAE105_2015/

Quiz 3 Solutions

1 Green’s functions (10 points). Consider the inhomogeneous differential equation

(1 + x2)y′′ = f (x) , with y(0) = 0 and y(1) = 0 .

1. Write down the equation satisfied by the Green’s function G(x, z) for this problem.

2. Find the “jump condition” satisfied by G′(x, z) at x = z.

3. The Green’s function is

G(x, z) =





x(z− 1)
1 + z2 for x < z

z(x− 1)
1 + z2 for x > z

Verify this satisfies the appropriate boundary conditions and conditions at x = z.

4. Write down the general solution for y(x) in terms of two integrals. [Hint: be very
clear about which variable is the variable of integration as well as its range in each integral.]

Solution.

1. The Green’s function satisfies

(1 + x2)G′′ = δ(x− z) , with G(0) = 0 and G(1) = 0 .

2. The jump condition is found by integrating the equation from 1 over a small neigh-
borhood surrounding z. The easiest way is to divide by 1 + x2. Then we have

G′′ =
δ(x− z)
1 + x2 ,

and integration yields

G′(z+)− G′(z−) =
1

1 + z2 .

Another way is to integrate

(1 + x2)G′′ = δ(x− z) .
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If we do this we need to integrate by parts to find

lim
ε→0

∫ z+ε

z−ε
(1+ x2)G′′ dx =

∫ z+ε

z−ε

d
dx

[
(1 + x2)G′

]
− 2xG′′ dx =

(
1 + z2

) [
G′(z+)− G′(z−)

]
.

This yields the same jump condition as above, since
∫ z+ε

z−ε δ(x− z)dx = 1, and so

G′(z+)− G′(z−) =
1

1 + z2 .

3. At x = 0 we use the Green’s function valid for x < z, which is

G(0, z) =
x(z− 1)
1 + z2

∣∣∣
x=0

= 0 ,

since the whole thing is multiplied by x. At x = 1,

G(1, z) =
z(x− 1)
1 + z2

∣∣∣
x=1

= 0 ,

since x− 1 = 0 at x = 1. At x = z, both halves of the Green’s function are equal to

z(z− 1)
1 + z2 .

The derivative of the Green’s function is

G′(x, z) =





z− 1
1 + z2 for x < z

z
1 + z2 for x > z

Thus we find
G′(z+)− G′(z−) =

z
1 + z2 −

z− 1
1 + z2 =

1
1 + z2 ,

and all the conditions are satisfied.

4. The general solution for y(x) is

y(x) =
∫ 1

0
f (z)G(x, z)dz , (1)

=
∫ x

0
f (z)G(x > z, z)dz

︸ ︷︷ ︸
use G for z < x

+
∫ z

x
f (z)G(x < z, z)dz

︸ ︷︷ ︸
use G for z > x

, (2)

= (x− 1)
∫ x

0
f (z)

z
1 + z2 dz + x

∫ 1

x
f (z)

z− 1
1 + z2 dz . (3)
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2 Fourier transforms (5 points). Three Fourier transforms are marked (d), (e), and (f)
below. Match each of these transforms to the correct physical space function:

(a) f (x) = δ(x)

(b) f (x) = e−x2
.

(c) f (x) =
{

1 −1 < x < 1
0 otherwise
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(d) (e) (f)

(a) (b) (c)

Solution. Note that the letters (a,b,c) on the figures do not corre-
spond to the letters in the problem write up. Unfortunately.

The solution is

(d)→ δ(x) (a) , (4)

(e)→ e−x2
(b) , (5)

( f )→ square pulse (c) . (6)
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3 Multidimensional partial differential equations (10 points). Ponder for a moment
the vibrations of a square drum modelled by the displacement of an elastic square mem-
brane with corners at (0, 0), (L, 0), (0, L) and (L, L). The displacement of the membrane
is governed by the wave equation,

∂2u
∂t2 = c2

(
∂2u
∂x2 +

∂2u
∂y2

)
.

The membrane is held taut around its edge, so that

u(0, y, t) = u(L, y, t) = u(x, 0, t) = u(x, L, t) = 0 .

We assume that, initially, the membrane has some finite displacement, but zero velocity,
so that

u(x, y, 0) = φ(x, y) , and
∂u
∂t

(x, y, 0) = 0 .

1. Separate variables by assuming that u = S(x, y)g(t), propose a separation variable
κ2, and solve the t-equation in terms of c and κ. Make sure you account for the
zero-velocity initial condition. What is the physical meaning of the product κc?

2. The solutions for S(x, y) are

S(x, y) = Anm sin
(nπx

L

)
sin
(mπy

L

)
,

where κ is found to be

κnm =

√(nπ

L

)2
+
(mπ

L

)2
,

and both n and m go from 1 to +∞. Explain in a few lines how one would derive
this result.

3. What are the lowest three frequencies of the elastic membrane?

Solution.

1. Substituting u = S(x, y)g(t), dividing by c2Sg, and defining a separation constant
κ2 yields

g′′

c2g
=
∇2S

S
= −κ2 .

The t-equation is
g′′ + (cκ)2g = 0 ,

and the general solution is

g = A sin(κct) + B cos(κct) .
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Since at t = 0 we have
∂u
∂t

= 0 ,

This means that A = 0, and the solution to the t-equation is

g = B cos(κct) .

The product κc is the oscillation frequency of the mode corresponding to κ. Note
that κ has units of 1/length, and c has units of length/time, so that κc has units
1/time.

2. The result for S is found by forming the (x, y)-equation,

∂2S
∂x2 +

∂2S
∂y2 + κS = 0 ,

separating variables, defining a new separation constant, and solving each equation
for x and y separately. Both x and y-equations are eigenproblems which are each
associate with an infinite sum of eigenvalues; this leads to a doubly-infinite sum of
solutions for S(x, y), each associated with a particular value of κnm.

3. Because the spatial modes are sines, the smallest values of n and m are n = m = 1;
and the smallest values of n and m correspond to the smallest values of κ and there-
fore the smallest values of κc, the eigenfrequencies of the membrane. The lowest
frequency is associated with n = m = 1, and the next two greater frequencies have
n = 1, m = 2 and n = 2, m = 1. Thus the lowest three frequencies are

κc =
(

cπ
√

2
L , cπ

√
5

L , cπ
√

5
L

)
.
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