Solution Homework 2 Exercise 3

Quite a few people had trouble with the concept of linearization. Here is a detailed explanation of what was asked in this problem.

The equations governing the flow are the compressible forms of the continuity equation and the Navier-Stokes equation. For simplicity, we'll make here the Stokes assumption $\lambda=-(2 / 3) \mu$. The text asked you to keep viscous terms. Nothing was said about body forces and you can't assume that p_{0} is uniform if you introduce body forces. We therefore have

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u}) & =0 \\
\rho\left(\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right) & =-\nabla p+\mu \nabla^{2} \mathbf{u}+\frac{\mu}{3} \nabla(\nabla \cdot \mathbf{u})
\end{aligned}
$$

Let's consider a base state $\left(\mathbf{u}_{0}, p_{0}, \rho_{0}\right)$. This must be a solution of the previous equations. You were also given in the text that this reference state is at rest $\left(\mathbf{u}_{0}=0\right)$ and that the pressure and density of the base state are uniform (p_{0} and ρ_{0} don't depend on position). Substituting these assumptions in the continuity equation for the base state gives $\partial \rho_{0} \partial t=0$ so the density of the base state is a constant. Navier-Stokes is automatically satisfied. Note that if you had introduced a body force on the right hand side, you couldn't have p_{0} uniform, but $\nabla p_{0}=\rho_{0} \mathbf{g}$.

Let's now introduce a perturbation to this reference solution of the equations of motion: $\left(\mathbf{u}^{\prime}, p^{\prime}, \rho^{\prime}\right)$. The fundamental assumption is that these quantities are small. Hence a term containing a product of two (or more) of them will be negligible with respect to terms that are linear in prime quantities. Introducing the decomposition $\mathbf{u}=\mathbf{u}_{0}+\mathbf{u}^{\prime}, \rho=\rho_{0}+\rho^{\prime}$ and $p=p_{0}+p^{\prime}$ and substituting, we get for the continuity equation

$$
\frac{\partial \rho_{0}}{\partial t}+\frac{\partial \rho^{\prime}}{\partial t}+\nabla \cdot\left(\rho_{0} \mathbf{u}_{0}+\rho_{0} \mathbf{u}^{\prime}+\rho^{\prime} \mathbf{u}_{0}+\rho^{\prime} \mathbf{u}^{\prime}\right)=0
$$

As discussed above, we know that $\mathbf{u}_{0}=0$ and ρ_{0} is a constant (independent of both space and time). Additionally $\rho^{\prime} \mathbf{u}^{\prime}$ are of second order in the perturbation quantities and hence negligible with respect to $\rho_{0} \mathbf{u}^{\prime}$ for example. Applying these simplifications leads to

$$
\begin{equation*}
\frac{\partial \rho^{\prime}}{\partial t}+\rho_{0}\left(\nabla \cdot \mathbf{u}^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

Carrying out the same substitution and expansion in the Navier-Stokes equations gives

$$
\begin{array}{r}
\left(\rho_{0}+\rho^{\prime}\right)\left(\frac{\partial \mathbf{u}_{0}}{\partial t}+\frac{\partial \mathbf{u}^{\prime}}{\partial t}+\left(\mathbf{u}_{0}+\mathbf{u}^{\prime}\right) \cdot \nabla\left(\mathbf{u}_{0}+\mathbf{u}^{\prime}\right)\right) \\
=-\nabla p_{0}-\nabla p^{\prime}+\mu \nabla^{2} \mathbf{u}_{0}+\frac{\mu}{3} \nabla\left(\nabla \cdot \mathbf{u}_{0}\right)+\mu \nabla^{2} \mathbf{u}^{\prime}+\frac{\mu}{3} \nabla\left(\nabla \cdot \mathbf{u}^{\prime}\right)
\end{array}
$$

Remember that $\mathbf{u}_{0}=0$ and $\nabla p_{0}=0$ (or $\nabla p_{0}=\rho_{0} \mathbf{g}$ if you decided to include body forces). Terms like $\rho^{\prime} \partial \mathbf{u}^{\prime} / \partial t, \rho_{0}\left(\mathbf{u}^{\prime} \nabla\right) \mathbf{u}^{\prime}$ are of second order in the perturbation quantities and will be neglected with respect to terms linear in the prime quantities. The Navier-Stokes equations hence become in linearized form

$$
\begin{equation*}
\rho_{0} \frac{\partial \mathbf{u}^{\prime}}{\partial t}=-\nabla p^{\prime}+\mu \nabla^{2} \mathbf{u}^{\prime}+\frac{\mu}{3} \nabla\left(\nabla \cdot \mathbf{u}^{\prime}\right) \tag{2}
\end{equation*}
$$

Let's now think about what is exactly the problem we are trying to solve. The base state is known, so ρ_{0} and p_{0} are not considered as unknowns here. Our unknowns are $p^{\prime}, \rho^{\prime}$ and \mathbf{u}^{\prime}, which is a total of 5 scalars. We have 4 equations. Hence we need another.

The quantities ρ^{\prime} and p^{\prime} are small variations of the base state density ρ_{0} and pressure p_{0}. The transformation from $\left(\rho_{0}, p_{0}\right)$ to $\left(\rho_{0}+\rho^{\prime}, p_{0}+p^{\prime}\right)$ can therefore be considered as adiabatic (no heat exchange) and reversible (small changes; technically, reversibility is incompatible with the presence of viscosity but this irreversible process can be neglected as a first approximation here). Therefore the entropy of is conserved. For a perfect gas, the entropy is proportional to $\log \left(p \rho^{-\gamma}\right)$ (see the thermodynamics review in Kundu), and an isentropic transformation conserves s and therefore conserves $p \rho^{-\gamma}$. Therefore, $p_{0} \rho_{0}^{-\gamma}=\left(p_{0}+p^{\prime}\right)\left(\rho_{0}+\rho^{\prime}\right)^{-\gamma}$. This equation should now be linearized by performing a Taylor expansion of the right hand side.

$$
\left(p_{0}+p^{\prime}\right)\left(\rho_{0}+\rho^{\prime}\right)^{-\gamma}=p_{0} \rho_{0}^{-\gamma}\left(1+\frac{p^{\prime}}{p_{0}}\right)\left(1+\frac{\rho^{\prime}}{\rho_{0}}\right)^{-\gamma} \sim p_{0} \rho_{0}^{-\gamma}\left(1+\frac{p^{\prime}}{p_{0}}-\gamma \frac{\rho^{\prime}}{\rho_{0}}\right)
$$

This should be equal to $p_{0} \rho_{0}^{-\gamma}$ and therefore at leading order:

$$
\begin{equation*}
p^{\prime}=\gamma \frac{p_{0}}{\rho_{0}} \rho^{\prime}=\gamma R T_{0} \rho^{\prime}=c^{2} \rho^{\prime} \tag{3}
\end{equation*}
$$

where $c^{2}=\gamma p_{0} / \rho_{0}=\gamma R T_{0}$ is the square of the speed of sound for a perfect gas. Another way of saying that is that the definition of the speed of sound is $c^{2}=(\partial p / \partial \rho)_{s}$. Since p^{\prime} and ρ^{\prime} are small variations of the base state quantities and the process is assumed to be isentropic, we can write $c^{2} \sim p^{\prime} / \rho^{\prime}$.

Equations (1),(2) and (3) are the linearized equations of motions that were asked for in this problem.

