Homework 1

Due Oct 3, 2006.

1 Show using suffices that

$$
\mathbf{u} \times(\nabla \times \mathbf{u})=\nabla\left(\frac{1}{2} \mathbf{u} \cdot \mathbf{u}\right)-(\mathbf{u} \cdot \nabla) \mathbf{u}
$$

For what kinds of velocity fields does the left-hand side vanish?

2 [Lautrup 10.2] A displacement field is given by

$$
\mathbf{u}=\left[\alpha(x+2 y)+\beta x^{2}, \alpha(y+2 z)+\beta y^{2}, \alpha(z+2 x)+\beta z^{2}\right] .
$$

Compute the divergence and curl of this field. Calculate the strain tensor

$$
e_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) .
$$

3 [210A midterm F2005] Consider the velocity field

$$
\mathbf{u}=\left(-y, x, \frac{1}{x^{2}+y^{2}+t+1}\right) .
$$

At $t=2 \pi$, compute the streamlines and the streakline made up of dye released from $(1,0,0)$ during $0 \leq t \leq 2 \pi$. Compute the particle path starting at $(1,0,0)$ at $t=0$. [You may leave the results in parametric form.]

4 [Kundu \& Cohen 3.11] A flow field on the $x y$-plane has velocity components

$$
u=3 x+y, \quad v=2 x-3 y
$$

Show that the circulation around the circle $(x-1)^{2}+(y-6)^{2}=4$ is 4π.

