Homework 5

Due Nov 28, 2006.

1 Water flow down a vertical circular pipe under gravity. The pipe walls are pulled up with velocity U. Is it possible for there to be zero net volume flux down the pipe? If so, what is U ?

2 A circular cylinder of radius a rotates with angular velocity $\Omega \cos \omega t$. Compute the flow of a viscous fluid inside the cylinder. [You may want to ignore transients.]

3 [Acheson 2.14] Consider in $y \geq 0$ the 2-D flow

$$
u=\alpha x f^{\prime}(\eta), \quad v=-(\nu \alpha)^{1 / 2} f(\eta)
$$

where

$$
\eta=(\alpha / \nu)^{1 / 2} y .
$$

Show that it is an exact solution of the Navier-Stokes equations which (i) satisfies the boundary conditions at the stationary rigid boundary $y=0$ and (ii) takes the asymptotic form $u \sim \alpha x, v \sim-\alpha y$ far from the boundary if

$$
f^{\prime \prime \prime}+f f^{\prime \prime}+1-f^{\prime 2}=0,
$$

with

$$
f(0)=f^{\prime}(0)=0, \quad f^{\prime}(\infty)=1 .
$$

Bonus: solve the equation numerically and plot your solution. Show that $f^{\prime}(3)=0.998$.

4 Find the dimensionless parameters for flow of a thin film of depth h with surface tension σ. [You should find at least Froude, Weber and Reynolds numbers.]

