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Midterm Solutions

1 (i) Continuity: V-u = 9,(Uy/h) = 0: OK. Navier-Stokes: no velocity in the
y- and z-directions. There may be hydrostatic balance in z but ignore it. In the
x-direction D 5 5
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so this is a solution if there is no pressure gradient.

(if) No pressure gradient in z; possibly hydrostatic gradient in z. Shear
stress 712 = pdu/dy = pU/h.

(iif) Integral form: tendency and convective terms vanish. Pressure terms
cancel. Only interesting component is z, and the surface stress terms much
cancel:
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for any control volume of length L.
(iv) Mechanical energy equation (ignore body forces):
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In this form all terms vanish. The right-hand side can also be written as
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These two terms are both
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Integral form: tendency and convective terms vanish. The surviving right-

hand side terms are
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where L is the length of the control volume and d is its height, since the inte-
grands are constant.




2 (i) The boundary is a streamline from the form of 1 so the no-normal flow
condition is satisfied there.
(ii) Calculate
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The vorticity is normal to the zy plane and has value
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i.e. it is constant in space. The rate of strain tensor is
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u= —2A(t)

(iii) The circulation around the boundary of the ellipse can be written as
/. gwdA = Aw since w is constant. Using A = 7ab and the value of w from (ii),
we have
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(iv) Write down the two components of the Euler equation:
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If A # 0, it is impossible to find a solution to these equations without a body
force (take 0, of the first minus 0, the second). If A = 0, one can obtain a
solution with no body force and
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(v) In general, particle paths and streamlines are different, but in this flow

they are the same even when the flow is unsteady. This is because the stream-
lines do not change over time, just the velocity of the flow along them.
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3 The upper surface is at z and has velocity v. The exit is at 0 and has velocity
vp. By mass conservation we have

7h(z)*v = wh(0)%vy.

Apply Bernoulli’s equation on a streamline from the upper surface to the out-
let. Assume that at the outlet the flow comes out as a constant-diameter jet so
that the pressure there is atmospheric. Then we have
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Eliminate vy from these two equations:
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We require v to be constant in time, so this is not an ordinary differential equa-
tion but just an algebraic relation. The profile h(z) is given by



