Solutions 0

1 Take the cross product with $\mathbf{u}: \mathbf{u} \times \mathbf{x}=\mathbf{u} \times \mathbf{v}$. Taking the cross product with u again leads to

$$
(\mathbf{u} . \mathbf{x}) \mathbf{u}-(\mathbf{u} . \mathbf{u}) \mathbf{x}=(\mathbf{u} . \mathbf{v}) \mathbf{u}-(\mathbf{u} . \mathbf{u}) \mathbf{v}
$$

Take the dot product with \mathbf{u} :

$$
\begin{equation*}
(\mathbf{u} \cdot \mathbf{x})(1+\mathbf{u} \cdot \mathbf{u})=\mathbf{u} \cdot \mathbf{v} \tag{1}
\end{equation*}
$$

Now eliminate u.x between the two equations above:

$$
\mathbf{x}=\mathbf{v}-\frac{\mathbf{u . v}}{1+\mathbf{u . u}}
$$

2 The extrema of a function on an unbounded domain are the points where its gradient vanishes. Here $\nabla f=(4 x, 2 y-3)$ and f has one extremum at $(0,3 / 2)$. We calculate $f_{x x}(3 / 2)>0$ and $f_{y y}(3 / 2)>0$, so $(0,3 / 2)$ is the minimum of f on the whole plane.

However this point does not belong to the unit disk and hence the minimum of f over the disk is on the bounding circle. On this circle, write $x=$ $\cos t, y=\sin t$ so that $F(t)=f(\cos t, \sin t)=\cos ^{2} t+3(1-\sin t)$. To find the extrema, take the derivative $F^{\prime} t=-\cos t(2 \sin t+3)$; its zeros are $t= \pm \pi / 2$. To know the nature of the extrema, take the second derivative of $F: F^{\prime \prime}(t)=$ $-2 \cos 2 t+3 \sin t$. Hence $F^{\prime \prime}(\pi / 2)>0$ and $F^{\prime \prime}(-\pi / 2)<0$. Therefore $t=\pi / 2$ is the minimum on the unit disk and the minimum on the unit disk is achieved at $(0,1)$.

- Remember that $\partial r / \partial x_{i}=\partial x_{i} / \partial r$. Then

$$
\begin{aligned}
\nabla^{2} r^{-n} & =\frac{\partial}{\partial x_{i}}\left(\frac{\partial r^{n}}{\partial x_{i}}\right) \\
& =\frac{\partial}{\partial x_{i}}\left(-n r^{-n-1} \frac{\partial r}{\partial x_{i}}\right) \\
& =\frac{\partial}{\partial x_{i}}\left(-n r^{-n-2} x_{i}\right) \\
& =n(n-2) r^{-n-4} x_{i} x_{i}+3 n r^{n-2} \\
& =n(n+1) r^{-n-2} .
\end{aligned}
$$

- Ω is a constant vector, so

$$
[\nabla(\boldsymbol{\Omega} \cdot \mathbf{x})]_{j}=\frac{\partial}{\partial x_{j}}\left(\Omega_{k} x_{k}\right)=\Omega_{k} \frac{\partial x_{k}}{\partial x_{j}}=\Omega_{k} \delta_{j k}=\Omega_{j}
$$

Therefore $\nabla(\boldsymbol{\Omega} . \mathbf{x})=\boldsymbol{\Omega}$.

- A, B, and C are constant so

$$
\frac{\partial f}{\partial x_{k}}=A_{i j} x_{i} \delta j k+A_{i j} x_{j} \delta_{i k}+B_{j} \delta_{j k}=A_{i k} x_{i}+A_{k j} x_{j}+B_{k}
$$

Hence $\nabla f=\mathbf{B}+\left(\mathbf{A}+\mathbf{A}^{T}\right) \mathbf{x}$. If A is symmetric, $\nabla f=2 \mathbf{A x}+\mathbf{B}$ (this is identical to the differentiation rule for the case where x is a scalar)

4 Vector divergence:

$$
\int_{S} p \mathrm{~d} \mathbf{S}=\int_{V} \nabla p \mathrm{~d} V \quad \text { and } \nabla p=\frac{N^{2} z}{g} \mathbf{e}_{z} .
$$

Therefore $-\int_{S} p \mathrm{~d} \mathbf{S}=-\left(\int_{V} z \mathrm{~d} V\right) g^{-1} N^{2} \mathbf{e}_{z}$ (pull the constant scalar and vectors out of the integral). The remaining integral is the weighted average of the z coordinate on the volume: this is the definition of z_{c} the centroid of the body. Hence

$$
-\int_{S} p \mathrm{~d} \mathbf{S}=-\frac{N^{2}}{g} z_{c} \mathbf{e}_{z}
$$

Note: if p is thought as the pressure field, the integral is the force on the body V. If one thinks of the body as being moved from a state of rest, the force tends to bring it back to its equilibrium position.

5 Since \mathbf{u} is irrotational there exists a potential ϕ such that $\mathbf{u}=\nabla \phi$. We also need to assume that $\nabla \mathbf{u}=\nabla^{2} \phi=0$. We obtain

$$
\begin{aligned}
\int_{V}|\mathbf{u}|^{2} \mathrm{~d} V & =\int_{V} \nabla \phi \cdot \nabla \phi \mathrm{~d} V \\
& =\int_{V}\left[\nabla(\phi \nabla \phi)-\phi \nabla^{2} \phi\right] \mathrm{d} V \\
& =\int_{V} \nabla(\phi \nabla \phi) \mathrm{d} V \\
& =\int_{S} \phi(\nabla \phi \cdot \mathrm{~d} \mathbf{S}) \\
& =\int_{S} \phi \frac{\partial \phi}{\partial n} \mathrm{~d} S
\end{aligned}
$$

This works if V is the domain enclosed by the surface. The case where V is unbounded should be handled very carefully. You need to use a volume bounded by your body and by a large sphere at infinity and check convergence. For example the integral diverges if \mathbf{u} is constant.

6 The integral is a third-rank tensor (3 free indices), with 27 coefficients. It is also isotropic: given the shape of the domain and the symmetry of the integrand, the result doesn't change under rotation). There is only one third order isotropic tensor: $\epsilon_{i j k}$, and hence the integral is proportional to this tensor $A_{i j k}=\kappa \epsilon_{i j k}$. Instead of 27 integrals we only need to compute 1 integral, for example $\int_{V} x_{1} x_{2} x_{3} \mathrm{~d} V$. To compute this integral, use spherical coordinates $\left(x_{1}=r \cos \theta, 2=r \sin \theta \cos \phi, x_{3}=r \sin \theta \sin \phi\right)$. The integral over the sphere ($0 \leq r \leq a, 0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi$) becomes

$$
\kappa=\underbrace{\int_{0}^{a} r^{5} \mathrm{~d} r}_{=\frac{a^{6}}{6}} \underbrace{\int_{0}^{\pi} \cos \theta \sin ^{3} \theta \mathrm{~d} \theta}_{=0} \underbrace{\int_{0}^{2 \pi} \cos \phi \sin \phi \mathrm{~d} \phi}_{=0}
$$

Therefore A is the zero third-rank tensor.

7 The components of the tensor in natural basis at the point $(2,1,-1)$ are

$$
\left(\begin{array}{ccc}
4-\sqrt{6} & 2 & -2 \\
2 & 1-\sqrt{6} & -1 \\
-2 & -1 & 1-\sqrt{6}
\end{array}\right)
$$

The principle axes of the tensor are the eigenvectors. You need to compute the eigenvalues of the matrix and then solve for the eigenvectors. Notice that

$$
T=\overbrace{\left(\begin{array}{ccc}
3 & 2 & -2 \\
2 & 0 & -1 \\
-2 & -1 & 0
\end{array}\right)}^{T_{1}}+(1-\sqrt{6}) I
$$

where I is the identity matrix. To find the eigenvalues of T we need only compute the eigenvalues of T_{1} since $\lambda(T)=\lambda\left(T_{1}\right)+1-\sqrt{6}$. The characteristic polynomial of T_{1} is $P_{T_{1}}=-(\lambda+1)^{2}(\lambda-5)$. The eigenvalues of T are therefore $(-\sqrt{6},-\sqrt{6}, 6-\sqrt{6})$ and an associated orthonormal basis of eigenvectors is

$$
V=\left(\begin{array}{ccc}
\frac{1}{\sqrt{11}} & -\frac{4}{\sqrt{66}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{11}} & \frac{7}{\sqrt{66}} & \frac{1}{\sqrt{6}} \\
\frac{3}{\sqrt{11}} & -\frac{1}{\sqrt{66}} & -\frac{1}{\sqrt{6}}
\end{array}\right) .
$$

