Solutions Homework 1

1 Use suffices.

$$
\begin{aligned}
{[\mathbf{u} \times(\nabla \times \mathbf{u})]_{i} } & =\epsilon_{i j k} u_{j} \epsilon_{k l m} \frac{\partial u_{m}}{\partial x_{l}} \\
& =\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right) u_{j} \frac{\partial u_{m}}{\partial x_{l}} \\
& =u_{j} \frac{\partial u_{j}}{\partial x_{i}}-u_{j} \frac{\partial u_{i}}{\partial x_{j}} \\
& =\frac{\partial}{\partial x_{i}}\left(\frac{1}{2} \mathbf{u} \cdot \mathbf{u}\right)-(\mathbf{u} \cdot \nabla) u_{i}
\end{aligned}
$$

Finally, $\mathbf{u} \times(\nabla \times \mathbf{u})=\nabla\left(\frac{1}{2} \mathbf{u} \cdot \mathbf{u}\right)-(\mathbf{u} \cdot \nabla) \mathbf{u}$
The left-hand side vanishes if \mathbf{u} and $\nabla \times \mathbf{u}$ are parallel. This is clearly true if the flow is irrotational $(\nabla \times \mathbf{u}=0)$. But other velocity fields satisfy this property, for example $\mathbf{u}=(\sin z, \cos z, 0)$. For this field, $\mathbf{u}=\nabla \times \mathbf{u}$ and the left-hand side of the equation is zero, but \mathbf{u} is not irrotational.

2 Use components.

- Divergence:

$$
\nabla \cdot \mathbf{u}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=3 \alpha+2 \beta(x+y+z)
$$

- Curl:

$$
\nabla \times \mathbf{u}=-2 \alpha\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

- Strain rate tensor: $e_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)$. This tensor is symmetric, so we only need to compute 6 components.

$$
e=\left(\begin{array}{ccc}
\alpha+2 \beta x & \alpha & \alpha \\
\alpha & \alpha+2 \beta y & \alpha \\
\alpha & \alpha & \alpha+2 \beta z
\end{array}\right) .
$$

Note that $e_{i i}=\nabla \cdot \mathbf{u}$.

3 At $t=2 \pi$, the equations for the streamlines are

$$
-\frac{\mathrm{d} x}{y}=\frac{\mathrm{d} y}{x}=\left(x^{2}+y^{2}+2 \pi+1\right) \mathrm{d} z
$$

Parameterize with s. Then we need to solve

$$
\frac{\mathrm{d} x}{\mathrm{~d} s}=-y, \quad \frac{\mathrm{~d} y}{\mathrm{~d} s}=x, \quad \frac{\mathrm{~d} z}{\mathrm{~d} s}=\frac{1}{x^{2}+y^{2}+2 \pi+1} .
$$

The solution to the first two of these equations that passes through the point $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
x=x_{0} \cos s-y_{0} \sin s, \quad y=x_{0} \sin s+y_{0} \cos s
$$

Hence $x^{2}+y^{2}=x_{0}^{2}+y_{0}^{2}$ which is independent of s, and the solution to the final equation is

$$
z=\frac{s}{x_{0}^{2}+y_{0}^{2}+2 \pi+1}+z_{0}
$$

Note that in the above equation, there are actually only 2 independent free parameters. We can for example set y_{0} to zero by redefining s. (This only changes the origin on the streamline not the streamline itself).

The equations for particle paths and streamlines are

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-y, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=x, \quad \frac{\mathrm{~d} z}{\mathrm{~d} t}=\frac{1}{x^{2}+y^{2}+t+1}
$$

The solution to the first two of these equations passing through $(1,0,0)$ at $t=t_{*}$ is

$$
x=\cos \left(t-t_{*}\right), \quad y=\sin \left(t-t_{*}\right)
$$

Once again $x^{2}+y^{2}=1$ is a constant. The final equation then has solution

$$
z=\log \frac{t+2}{t_{*}+2}
$$

The particle paths correspond to $t_{*}=0$ so

$$
x=\cos t, \quad y=\sin t, \quad z=\log (1+t / 2)
$$

for $0 \leq t \leq 2 \pi$. For streaklines, $t=2 \pi$ and

$$
x=\cos t_{*}, \quad y=-\sin t_{*}, \quad z=\log \frac{2 \pi+2}{t_{*}+2}
$$

where $0 \leq t_{*} \leq 2 \pi$.

4 The circle can be parameterized by

$$
\left\{\begin{array}{l}
x(\theta)=1+2 \cos \theta \\
y(\theta)=6+2 \cos \theta
\end{array}, \quad 0<\theta<2 \pi\right.
$$

On the circle, the tangent unit vector is $\mathbf{e}_{\theta}=-\sin \theta \mathbf{e}_{x}+\cos \theta \mathbf{e}_{y}$. The circulation is hence

$$
\begin{aligned}
\Gamma & =\int_{C}\left(u \mathbf{e}_{x}+v \mathbf{e}_{y}\right) \cdot \mathbf{e}_{\theta} R \mathrm{~d} \theta \\
& \left.=\int_{0}^{2 \pi}[\cos \theta(2(1+2 \cos \theta)-3(6+2 \sin \theta)))-\sin \theta(3(1+2 \cos \theta)+6+2 \sin \theta)\right] 2 \mathrm{~d} \theta \\
& \left.=2 \int_{0}^{2 \pi}\left(-16 \cos \theta+4 \cos ^{2} \theta+9 \sin \theta-2 \sin ^{2} \theta-30 \sin \theta \cos \theta\right)\right) \mathrm{d} \theta \\
& =4 \pi
\end{aligned}
$$

