Solutions Homework 2

1 The flow is two-dimensional since $w=0$ and $\partial_{z}=0$. The streamlines satisfy $\mathrm{d} x / \alpha x=\mathrm{d} y /(-\alpha y)$ which can be written as $x y=C$ on a streamline. Streamlines are hence the hyperbolae $y=C / x$. The flow goes away from the y-axis.

The material derivative is given by

$$
\frac{\mathrm{D} c}{\mathrm{D} t}=\frac{\partial c}{\partial t}+u \frac{\partial c}{\partial x}+v \frac{\partial c}{\partial y}=-\alpha \beta x^{2} y \mathrm{e}^{-\alpha t}+\alpha x\left(2 \beta x y \mathrm{e}^{-\alpha t}\right)-\alpha y\left(\beta x^{2} \mathrm{e}^{-\alpha t}\right)=0 ;
$$

c doesn't change in time following a fluid element.
At time t, the velocity of the particle that was at \mathbf{X} at $t=0$ is $\mathbf{u}(\mathbf{x}(\mathbf{X}, t), t)$, therefore for this particle

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\alpha x, \quad x(t=0)=X, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=-\alpha y, \quad y(t=0)=Y .
$$

This system can be solved to give $\mathbf{x}(\mathbf{X}, t)=\left(X \mathrm{e}^{\alpha t}, Y \mathrm{e}^{-\alpha t}\right)$. Hence the Lagrangian derivatives taken at fixed \mathbf{X} are

$$
\left(\frac{\partial \mathbf{x}}{\partial t}\right)_{\mathbf{x}}=\binom{\alpha X e^{\alpha t}}{-\alpha Y e^{-\alpha t}}=\binom{\alpha x}{-\alpha y}=\mathbf{u}
$$

and

$$
\left(\frac{\partial \mathbf{u}}{\partial t}\right)_{\mathbf{x}}=\left(\frac{\partial}{\partial t}\binom{\alpha X e^{\alpha t}}{-\alpha Y e^{-\alpha t}}\right)_{\mathbf{x}}=\alpha^{2} \mathbf{x} .
$$

The Eulerian acceleration is

$$
\frac{\mathrm{D} \mathbf{u}}{\mathrm{D} t}=(\mathbf{u} \cdot \nabla) \mathbf{u}=\left(\alpha x \frac{\partial}{\partial x}-\alpha y \frac{\partial}{\partial y}\right) \mathbf{u}=\alpha^{2} \mathbf{x}=\left(\frac{\partial \mathbf{u}}{\partial t}\right)_{\mathbf{x}} .
$$

These results are true in general since they are respectively the definitions of velocity and acceleration written inthe Eulerian and Lagrangian formulations. Substituting for x and y in $c(x, y, t)$ we get

$$
c(X, Y, t)=\beta X^{2} Y
$$

which is of course independent of t.

2 For a general Newtonian fluid, $\tau_{i j}=2 \mu e_{i j}+\lambda(\nabla \cdot \mathbf{u}) \delta_{i j}$. Remember that $\partial_{\theta} \mathbf{e}_{r}=\mathbf{e}_{\theta}, \partial_{\theta} \mathbf{e}=-\mathbf{e}_{r}$ and $\partial_{r} \mathbf{e}_{r}=\partial_{r} \mathbf{e}_{\theta}=0$. By definition,

$$
\begin{aligned}
e_{r r} & =\left(\left(\mathbf{e}_{r} \cdot \nabla\right)(u)\right) \cdot \mathbf{e}_{r}=\left(\frac{\partial}{\partial r}\left(u_{r} \mathbf{e}_{r}+u_{\theta} \mathbf{e}_{\theta}\right)\right) \cdot \mathbf{e}_{r}=\frac{\partial u_{r}}{\partial r} \\
e_{\theta \theta} & =\left(\left(\mathbf{e}_{\theta} \cdot \nabla\right) \mathbf{u}\right) \cdot \mathbf{e}_{\theta}=\left(\frac{1}{r} \frac{\partial}{\partial \theta}\left(u_{r} \mathbf{e}_{r}+u_{\theta} \mathbf{e}_{\theta}\right)\right) \cdot \mathbf{e}_{\theta} \\
& =\left[\frac{1}{r}\left(\frac{\partial u_{r}}{\partial \theta} \mathbf{e}_{r}+u_{r} \mathbf{e}_{\theta}+\frac{\partial u_{\theta}}{\partial \theta} \mathbf{e}_{\theta}-u_{\theta} \mathbf{e}_{r}\right] \cdot \mathbf{e}_{\theta}=\frac{u_{r}}{r}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta},\right. \\
e_{r \theta} & \left.\left.=\frac{1}{2}\left[\left(\mathbf{e}_{\theta} \cdot \nabla\right) \mathbf{u}\right) \mathbf{e}_{r}+\left(\mathbf{e}_{r} \cdot \nabla\right) \mathbf{u}\right) \cdot \mathbf{e}_{\theta}\right] \\
& =\frac{1}{2}\left[\frac{1}{r} \frac{\partial}{\partial \theta}\left(u_{r} \mathbf{e}_{r}+u_{\theta} \mathbf{e}_{\theta}\right) \cdot \mathbf{e}_{r}+\frac{\partial}{\partial r}\left(u_{r} \mathbf{e}_{r}+u_{\theta} \mathbf{e}_{\theta}\right) \cdot \mathbf{e}_{\theta}\right] \\
& =\frac{1}{2}\left[\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}-\frac{u_{\theta}}{r}+\frac{\partial u_{\theta}}{\partial r}\right]=\frac{1}{2}\left[\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}+r \frac{\partial}{\partial r}\left(\frac{u_{\theta}}{r}\right)\right]
\end{aligned}
$$

The isotropic term $\delta_{i} j$ only gives terms in the $t_{r r}$ and $t_{\theta \theta}$ components, and in polar coordinates $\nabla \cdot \mathbf{u}=\frac{1}{r} \partial\left(r u_{r}\right) / \partial r+\frac{1}{r} \partial u_{\theta} / \partial \theta$. Finally,

$$
\begin{aligned}
t_{r r} & =2 \mu \frac{\partial u_{r}}{\partial r}+\lambda\left(\frac{1}{r} \frac{\partial\left(r u_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}\right) \\
t_{r \theta} & =t_{\theta r}=\mu\left[\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}+r \frac{\partial}{\partial r}\left(\frac{u_{\theta}}{r}\right)\right] \\
t_{\theta \theta} & =2 \mu\left(\frac{u_{r}}{r}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}\right)+\lambda\left(\frac{1}{r} \frac{\partial\left(r u_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}\right) .
\end{aligned}
$$

3 Start from Navier-Stokes with no body forces and the continuity equation:

$$
\begin{aligned}
\rho \frac{\mathrm{D} \mathbf{u}}{\mathrm{D} t} & =-\nabla p+\mu \nabla^{2} \mathbf{u}+\frac{\mu}{3} \nabla \cdot(\nabla \cdot \mathbf{u}) \\
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \mathbf{u} & =0
\end{aligned}
$$

Decompose according to $\mathbf{u}=\mathbf{0}+\mathbf{u}^{\prime}, \rho=\rho_{0}+\rho^{\prime}$ and $p=p_{0}+p^{\prime}$ with p_{0} and ρ_{0} uniform and constant. The variables p^{\prime} and ρ^{\prime} are small departures about the state of rest, so that the transformation can be considered adiabatic and reversible (isentropic) so $p \rho^{-\gamma}$ is a constant and $p^{\prime} / p_{0}=\gamma \rho^{\prime} / \rho_{0}$. Using the perfect gas law, this can be written as $p^{\prime}=\gamma R T_{0} \rho^{\prime}$.

Substitute the decomposition into the dynamical equations and keep only the terms linear in the prime quantities. The linearized compressible equations become

$$
\begin{aligned}
& \rho \frac{\partial \mathbf{u}^{\prime}}{\partial t}=-\nabla p^{\prime}+\mu \nabla^{2} \mathbf{u}^{\prime}+\frac{\mu}{3} \nabla \cdot\left(\nabla \cdot \mathbf{u}^{\prime}\right), \\
& \frac{\partial \rho^{\prime}}{\partial t}+\rho_{0} \nabla \cdot \mathbf{u}^{\prime}=0, \\
& p^{\prime}=\gamma R T_{0} \rho^{\prime} .
\end{aligned}
$$

4 For a fluid at rest, the Navier-Stokes equations become $0=\rho \mathbf{g}-\nabla p$ (the hydrostatic relation). Taking the divergence of this equation gives

$$
\nabla \cdot\left(\frac{1}{\rho} \nabla p\right)=\nabla \cdot \mathbf{g}=-\nabla^{2} \Phi=-4 \pi G \rho
$$

With spherical symmetry, p only depends on r, the distance from the origin. Then

$$
\nabla p=\frac{\partial p}{\partial r} \mathbf{e}_{r}, \quad \nabla \cdot\left(\frac{1}{\rho} \nabla p\right)=\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \frac{1}{\rho} \frac{\mathrm{~d} p}{\mathrm{~d} r}\right) .
$$

This gives the equation

$$
\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(\frac{r^{2}}{\rho} \frac{\mathrm{~d} p}{\mathrm{~d} r}\right)=-4 \pi G \rho
$$

If $\rho=\rho_{0}$ is constant, we integrate and obtain

$$
\frac{r^{2}}{\rho} \frac{\mathrm{~d} p}{\mathrm{~d} r}=-\frac{4}{3} \pi \rho_{0}^{2} G r^{3}+c
$$

For the pressure gradient to be finite at $r=0, c$ must be zero. Dividing by r^{2} and integrating one more time with respect to r yields

$$
p=p_{s}-\frac{2}{3} \pi \rho_{0}^{2} G\left(r^{2}-a^{2}\right)
$$

with p_{s} and a respectively the surface pressure and the radius of the planet. Assuming $p_{s}=0$ (vacuum at the surface), the pressure at the center is

$$
p_{c}=\frac{2}{3} \pi \rho_{0}^{2} G a^{2}
$$

With the values $\rho_{0}=3.32 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}, G=6.67 \times 10^{-11} \mathrm{~kg}^{-1} \mathrm{~m}^{3} \mathrm{~s}^{-2}$, we obtain $p_{c}=4.65 \times 10^{9}$ or $4.59 \times 10^{4} \mathrm{~atm}$.

