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Solutions Homework 2

1 The flow is two-dimensional since w = 0 and ∂z = 0. The streamlines
satisfy dx/αx = dy/(−αy) which can be written as xy = C on a streamline.
Streamlines are hence the hyperbolae y = C/x. The flow goes away from the
y-axis.

The material derivative is given by

Dc

Dt
=

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
= −αβx2ye−αt + αx(2βxye−αt)− αy(βx2e−αt) = 0;

c doesn’t change in time following a fluid element.
At time t, the velocity of the particle that was at X at t = 0 is u(x(X, t), t),

therefore for this particle

dx

dt
= αx, x(t = 0) = X,

dy

dt
= −αy, y(t = 0) = Y.

This system can be solved to give x(X, t) = (Xeαt, Y e−αt). Hence the La-
grangian derivatives taken at fixed X are(

∂x
∂t

)
X

=
(

αXeαt

−αY e−αt

)
=

(
αx
−αy

)
= u

and (
∂u
∂t

)
X

=
(

∂

∂t

(
αXeαt

−αY e−αt

))
X

= α2x.

The Eulerian acceleration is

Du
Dt

= (u·∇)u =
(

αx
∂

∂x
− αy

∂

∂y

)
u = α2x =

(
∂u
∂t

)
X

.

These results are true in general since they are respectively the definitions of
velocity and acceleration written inthe Eulerian and Lagrangian formulations.
Substituting for x and y in c(x, y, t) we get

c(X, Y, t) = βX2Y

which is of course independent of t.
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2 For a general Newtonian fluid, τij = 2µeij + λ(∇·u)δij . Remember that
∂θer = eθ, ∂θe = −er and ∂rer = ∂reθ = 0. By definition,

err = ((er·∇)(u))·er =
(

∂

∂r
(urer + uθeθ)

)
·er =

∂ur

∂r
,

eθθ = ((eθ·∇)u)·eθ =
(

1
r

∂

∂θ
(urer + uθeθ)

)
·eθ

=
[
1
r
(
∂ur

∂θ
er + ureθ +

∂uθ

∂θ
eθ − uθer

]
·eθ =

ur

r
+

1
r

∂uθ

∂θ
,

erθ =
1
2
[(eθ·∇)u)er + (er·∇)u)·eθ]

=
1
2

[
1
r

∂

∂θ
(urer + uθeθ)·er +

∂

∂r
(urer + uθeθ)·eθ

]
=

1
2

[
1
r

∂ur

∂θ
− uθ

r
+

∂uθ

∂r

]
=

1
2

[
1
r

∂ur

∂θ
+ r

∂

∂r

(uθ

r

)]
The isotropic term δij only gives terms in the trr and tθθ components, and

in polar coordinates ∇·u = 1
r ∂(rur)/∂r + 1

r ∂uθ/∂θ. Finally,

trr = 2µ
∂ur

∂r
+ λ

(
1
r

∂(rur)
∂r

+
1
r

∂uθ

∂θ

)
,

trθ = tθr = µ

[
1
r

∂ur

∂θ
+ r

∂

∂r
(
uθ

r
)
]

,

tθθ = 2µ

(
ur

r
+

1
r

∂uθ

∂θ

)
+ λ

(
1
r

∂(rur)
∂r

+
1
r

∂uθ

∂θ

)
.

3 Start from Navier–Stokes with no body forces and the continuity equation:

ρ
Du
Dt

= −∇p + µ∇2u +
µ

3
∇·(∇·u),

Dρ

Dt
+ ρ∇·u = 0.

Decompose according to u = 0 + u′, ρ = ρ0 + ρ′ and p = p0 + p′ with
p0 and ρ0 uniform and constant. The variables p′ and ρ′ are small departures
about the state of rest, so that the transformation can be considered adiabatic
and reversible (isentropic) so pρ−γ is a constant and p′/p0 = γρ′/ρ0. Using the
perfect gas law, this can be written as p′ = γRT0ρ

′.
Substitute the decomposition into the dynamical equations and keep only

the terms linear in the prime quantities. The linearized compressible equations
become

ρ
∂u′

∂t
= −∇p′ + µ∇2u′ +

µ

3
∇·(∇·u′),

∂ρ′

∂t
+ ρ0∇·u′ = 0,

p′ = γRT0ρ
′.
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4 For a fluid at rest, the Navier–Stokes equations become 0 = ρg − ∇p (the
hydrostatic relation). Taking the divergence of this equation gives

∇·
(

1
ρ
∇p

)
= ∇·g = −∇2Φ = −4πGρ.

With spherical symmetry, p only depends on r, the distance from the origin.
Then

∇p =
∂p

∂r
er, ∇·

(
1
ρ
∇p

)
=

1
r2

d
dr

(
r2 1

ρ

dp

dr

)
.

This gives the equation

1
r2

d
dr

(
r2

ρ

dp

dr

)
= −4πGρ.

If ρ = ρ0 is constant, we integrate and obtain

r2

ρ

dp

dr
= −4

3
πρ2

0Gr3 + c.

For the pressure gradient to be finite at r = 0, c must be zero. Dividing by r2

and integrating one more time with respect to r yields

p = ps −
2
3
πρ2

0G(r2 − a2)

with ps and a respectively the surface pressure and the radius of the planet.
Assuming ps = 0 (vacuum at the surface), the pressure at the center is

pc =
2
3
πρ2

0Ga2.

With the values ρ0 = 3.32 × 103 kg m−3, G = 6.67 × 10−11 kg−1 m3 s−2, we
obtain pc = 4.65× 109 or 4.59× 104 atm.
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