Solutions Homework 3

1 If we don't neglect the movement of the free surface of the tank, the velocity at the surface is $\mathbf{u}=\dot{h} \mathbf{e}_{z}$ and the potential in the tank can be taken to be $\phi=\dot{h} z$. If at the exit of the pipe, $\mathbf{u}=U \mathbf{e}_{x}$ and the potential is $\phi=U x$ as in class, irrotational Bernoulli applied at the free surface and at the exit of the pipe gives

$$
\ddot{h} h+\frac{1}{2} \dot{h}^{2}+g h+\frac{p_{0}}{\rho}=\dot{U} L+\frac{1}{2} U^{2}+\frac{p_{0}}{\rho} .
$$

The velocities U and \dot{h} can be related using mass conservation by $U=-(A / a) \dot{h}$ (\dot{h} is negative and U is positive).

Substituting into Bernoulli's equation, we get an equation for h :

$$
\left(h+\frac{A}{a} L\right) \ddot{h}+\frac{1}{2}\left(1-\frac{A^{2}}{a^{2}}\right) \dot{h}^{2}+g h=0 .
$$

The dimensional quantities in the problem are h, h_{0}, L, g, A, a and t. There are therefore a priori 5 independent nondimensional group. Write $\beta=A / a$ and denote the scales for time and h by τ and H respectively so that $h=H z$. We obtain the equation

$$
\left(z+\frac{\beta L}{H}\right) \ddot{z}+\frac{1}{2}\left(1-\beta^{2}\right) \dot{z}^{2}+\frac{g \tau^{2}}{H} z=0 .
$$

This leads us to pick $H=L / \beta$ and $\tau=\sqrt{g H}$. This we can write down the equation with only the parameter β as

$$
\ddot{z}\left(\beta^{-2} z+1\right)+\frac{1}{2}\left(\beta^{-2}-1\right) \dot{z}^{2}+z=0
$$

with initial condition $z(0)=z_{0} \equiv h_{0} a / L A$.
This equation can be solved numerically, e.g. using MATLAB. Results are shown below. For large β, as in class, we can drop the β^{-2} terms: this gives the dashed curves which are a good approximation. The hyperbolic tangent solution from class corresponds in addition to replacing the z term by z_{0} : these are the dot-dash curves, which are not such a good approximation. Note that the actual solution oscillates forever; the curves below have been truncated when $h=0$.

Figure 1: $h(z)$ for $z_{0}=0.2$.

2 Assume incompressible inviscid flow. There are two possibilities: work either in the lab frame where the fluid has velocity $\mathbf{u}=\Omega r \mathbf{e}_{\theta}$, or in the rotating frame where the fluid is at rest but you need to add a centrifugal body force: $\mathbf{f}=\Omega^{2} r \mathbf{e}_{r}$.

In the rotating frame, the fluid is at rest so $\mathbf{u}=0$. The forces acting to a fluid particle are gravity, pressure and centrifugal force. Projecting the Euler equation along the radial, azimuthal and vertical axes gives

$$
\begin{aligned}
0 & =-\frac{\partial p}{\partial r}+\rho \Omega^{2} r \\
0 & =-\frac{\partial p}{\partial \theta} \\
0 & =-\frac{\partial p}{\partial z}-\rho g
\end{aligned}
$$

Integrating this system gives $p=p_{0}+\frac{1}{2} \rho \Omega^{2} r^{2}-\rho g z$.
Could you use Bernoulli? In the rotating frame, yes, because the body force is conservative and comes from a potential $\mathbf{f}=-\nabla F$ with $F=-\frac{1}{2} \Omega^{2} r^{2}$. You can use irrotational Bernoulli and therefore the Bernoulli function $B=p / \rho-$ half $\Omega^{2} r^{2}+\rho g z$ is a constant everywhere in the fluid.

If you stay in the lab frame, the flow is not irrotational anymore (solid body rotation) but steady. Steady Bernoulli would give you the same expression for

Figure 2: $h(z)$ for $z_{0}=1$.
the Bernoulli function B but this time this function is only a constant along streamlines (circles around the vertical axis) and vorticity lines (vertical lines). Therefore B does not depend on z and θ. But B is a function of r, and cannot be used to find the pressure everywhere.

The equation for the free surface is $z=\zeta(r)$. At the free surface, the boundary condition gives $p=p_{a}$. Therefore

$$
p_{a}=p_{0}+\frac{1}{2} \rho \Omega^{2} r^{2}-\rho g z
$$

Solving for ζ gives

$$
\zeta=\frac{\Omega^{2} r^{2}}{2 g}+\zeta_{0}
$$

where ζ_{0} is a constant.

3 Assume irrotational, inviscid and isothermal flow, and perfect gas. Then $\mathbf{u}=\nabla \phi$ and $p=\rho R T_{0}$. The continuity equation can be written as

$$
\frac{\mathrm{D} \log \rho}{\mathrm{D} t}=\frac{1}{\rho} \frac{\mathrm{D} \rho}{\mathrm{D} t}=-\nabla \cdot \mathbf{u}=-\nabla^{2} \phi
$$

Unsteady Bernoulli gives

$$
\frac{\partial \phi}{\partial t}+\frac{1}{2}(\nabla \phi)^{2}+R T_{0} \log \rho=0
$$

Figure 3: $h(z)$ for $z_{0}=5$.
since $\int \mathrm{d} p / \rho=R T_{0} \int \mathrm{~d} \rho / \rho=R T_{0} \log \rho$. The constant in the unsteady Bernoulli equation can be set to 0 without loss of generality.

Substituting for $\log (\rho)$ in the continuity equation, we get an equation for ϕ only

$$
R T_{0} \nabla^{2} \phi=\frac{\mathrm{D}}{\mathrm{D} t}\left(\frac{\partial \phi}{\partial t}+\frac{1}{2}(\nabla \phi)^{2}\right)
$$

which can be expanded if necessary into

$$
R T_{0} \nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial t^{2}}+\frac{\partial}{\partial t}(\nabla \phi)^{2}+\frac{1}{2} \nabla \phi \cdot \nabla\left((\nabla \phi)^{2}\right) .
$$

If $\phi=\Gamma \theta / 2 \pi$, the velocity is

$$
\mathbf{u}=\nabla \phi=\frac{\Gamma}{2 \pi r} \mathbf{e}_{\theta} .
$$

Substituting this into the ϕ equation shows that Γ must be constant in time. Substituting into the Bernoulli equation gives

$$
\frac{\Gamma^{2}}{8 \pi^{2} r^{2}}+R T_{0} \log p=C
$$

Applying the boundary condition at infinity gives

$$
p=p_{\infty} e^{-\Gamma^{2} /\left(8 \pi^{2} R T_{0} r^{2}\right)}
$$

For this isothermal compressible vortex, the pressure is zero at the center.

4 Start from the compressible form of the Euler equations in suffix notation

$$
\frac{\partial u_{k}}{\partial t}+\frac{\partial}{\partial x_{k}}\left(\frac{1}{2} u_{l} u_{l}\right)+\epsilon_{k l m} \omega_{l} u_{m}=-\frac{1}{\rho} \frac{\partial p}{\partial x_{k}}+\frac{\partial \Omega}{\partial x_{k}}
$$

where Ω is the potential for the conservative body force. The gradient terms disappear when we take the curl, but the pressure term doesn't since ρ is no longer constant. As shown in lectures,

$$
\begin{aligned}
{[\nabla \times(\omega \times \mathbf{u})]_{i} } & =\epsilon_{i j k} \frac{\partial}{\partial x_{j}}\left(\epsilon_{k l m} \omega_{l} u_{m}\right) \\
& =\frac{\partial}{\partial x_{j}}\left(\omega_{i} u_{j}-\omega_{j} u_{i}\right) \\
& =(\mathbf{u} \cdot \nabla) \omega_{i}+(\nabla \cdot \mathbf{u}) \omega_{i}-(\omega \cdot \nabla) u_{i}
\end{aligned}
$$

For the pressure term,

$$
\begin{aligned}
\epsilon_{i j k} \frac{\partial}{\partial x_{j}}\left(\frac{1}{\rho} \frac{\partial p}{\partial x_{k}}\right) & =-\frac{\epsilon_{i j k}}{\rho^{2}} \frac{\partial \rho}{\partial x_{j}} \frac{\partial p}{\partial x_{k}}+\epsilon_{i j k} \rho \frac{\partial^{2} p}{\partial x_{j} \partial x_{k}} \\
& =-\left(\frac{\nabla \rho \times \nabla p}{\rho^{2}}\right)_{i}
\end{aligned}
$$

since the last term cancels by symmetry. Substituting in the original equation gives in vector form

$$
\frac{\mathrm{D} \omega}{\mathrm{D} t}=(\omega \cdot \nabla) \mathbf{u}-(\nabla \cdot \mathbf{u}) \omega+\frac{\nabla \rho \times \nabla p}{\rho^{2}} .
$$

By the product rule

$$
\frac{\mathrm{D}}{\mathrm{D} t} \frac{\omega}{\rho}=\frac{1}{\rho} \frac{\mathrm{D} \omega}{\mathrm{D} t}-\frac{\omega}{\rho^{2}} \frac{\mathrm{D} \rho}{\mathrm{D} t}
$$

but the continuity equation gives $\mathrm{D} \rho / \mathrm{D} t \rho=-\rho(\nabla \cdot \mathbf{u})$. Combining this with the previous result gives

$$
\frac{\mathrm{D}}{\mathrm{D} t} \frac{\omega}{\rho}=\left(\frac{\omega}{\rho} \cdot \nabla\right) \mathbf{u}+\frac{\nabla \rho \times \nabla p}{\rho^{3}} .
$$

The second term $\rho^{-2} \nabla \rho \times \nabla p$ creates vorticity when isopycnals and isobars are not aligned: it. It is the baroclinic torque or rate of vorticity generation due to the baroclinicity of the flow. For barotropic flow, p is a function of ρ only and the two gradients are aligned so the torque vanishes. We also see that in the absence of this term, ω / ρ is transported like a line element.

