
MAE210A: Fluid Mechanics I Fall Quarter 2006
http://maecourses.ucsd.edu/mae210a

Solutions Homework 3

1 If we don’t neglect the movement of the free surface of the tank, the velocity
at the surface is u = ḣez and the potential in the tank can be taken to be φ = ḣz.
If at the exit of the pipe, u = Uex and the potential is φ = Ux as in class,
irrotational Bernoulli applied at the free surface and at the exit of the pipe gives

ḧh +
1
2
ḣ2 + gh +

p0

ρ
= U̇L +

1
2
U2 +

p0

ρ
.

The velocities U and ḣ can be related using mass conservation by U = −(A/a)ḣ
(ḣ is negative and U is positive).

Substituting into Bernoulli’s equation, we get an equation for h:(
h +

A

a
L

)
ḧ +

1
2

(
1− A2

a2

)
ḣ2 + gh = 0.

The dimensional quantities in the problem are h, h0, L, g, A, a and t. There
are therefore a priori 5 independent nondimensional group. Write β = A/a
and denote the scales for time and h by τ and H respectively so that h = Hz.
We obtain the equation(

z +
βL

H

)
z̈ +

1
2
(1− β2)ż2 +

gτ2

H
z = 0.

This leads us to pick H = L/β and τ =
√

gH . This we can write down the
equation with only the parameter β as

z̈(β−2z + 1) +
1
2
(β−2 − 1)ż2 + z = 0

with initial condition z(0) = z0 ≡ h0a/LA.
This equation can be solved numerically, e.g. using MATLAB. Results are

shown below. For large β, as in class, we can drop the β−2 terms: this gives
the dashed curves which are a good approximation. The hyperbolic tangent
solution from class corresponds in addition to replacing the z term by z0: these
are the dot-dash curves, which are not such a good approximation. Note that
the actual solution oscillates forever; the curves below have been truncated
when h = 0.
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Figure 1: h(z) for z0 = 0.2.

2 Assume incompressible inviscid flow. There are two possibilities: work
either in the lab frame where the fluid has velocity u = Ωreθ, or in the rotating
frame where the fluid is at rest but you need to add a centrifugal body force:
f = Ω2rer.

In the rotating frame, the fluid is at rest so u = 0. The forces acting to a
fluid particle are gravity, pressure and centrifugal force. Projecting the Euler
equation along the radial, azimuthal and vertical axes gives

0 = −∂p

∂r
+ ρΩ2r,

0 = −∂p

∂θ
,

0 = −∂p

∂z
− ρg.

Integrating this system gives p = p0 + 1
2ρΩ2r2 − ρgz.

Could you use Bernoulli? In the rotating frame, yes, because the body force
is conservative and comes from a potential f = −∇F with F = − 1

2Ω2r2. You
can use irrotational Bernoulli and therefore the Bernoulli function B = p/ρ −
halfΩ2r2 + ρgz is a constant everywhere in the fluid.

If you stay in the lab frame, the flow is not irrotational anymore (solid body
rotation) but steady. Steady Bernoulli would give you the same expression for
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Figure 2: h(z) for z0 = 1.

the Bernoulli function B but this time this function is only a constant along
streamlines (circles around the vertical axis) and vorticity lines (vertical lines).
Therefore B does not depend on z and θ. But B is a function of r, and cannot
be used to find the pressure everywhere.

The equation for the free surface is z = ζ(r). At the free surface, the bound-
ary condition gives p = pa. Therefore

pa = p0 +
1
2
ρΩ2r2 − ρgz.

Solving for ζ gives

ζ =
Ω2r2

2g
+ ζ0,

where ζ0 is a constant.

3 Assume irrotational, inviscid and isothermal flow, and perfect gas. Then
u = ∇φ and p = ρRT0. The continuity equation can be written as

D log ρ

Dt
=

1
ρ

Dρ

Dt
= −∇·u = −∇2φ.

Unsteady Bernoulli gives

∂φ

∂t
+

1
2
(∇φ)2 + RT0 log ρ = 0,
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Figure 3: h(z) for z0 = 5.

since
∫

dp/ρ = RT0

∫
dρ/ρ = RT0 log ρ. The constant in the unsteady Bernoulli

equation can be set to 0 without loss of generality.
Substituting for log(ρ) in the continuity equation, we get an equation for φ

only

RT0∇2φ =
D
Dt

(
∂φ

∂t
+

1
2
(∇φ)2

)
which can be expanded if necessary into

RT0∇2φ =
∂2φ

∂t2
+

∂

∂t
(∇φ)2 +

1
2
∇φ·∇((∇φ)2).

If φ = Γθ/2π, the velocity is

u = ∇φ =
Γ

2πr
eθ.

Substituting this into the φ equation shows that Γ must be constant in time.
Substituting into the Bernoulli equation gives

Γ2

8π2r2
+ RT0 log p = C.
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Applying the boundary condition at infinity gives

p = p∞e−Γ2/(8π2RT0r2).

For this isothermal compressible vortex, the pressure is zero at the center.

4 Start from the compressible form of the Euler equations in suffix notation

∂uk

∂t
+

∂

∂xk
(
1
2
ulul) + εklmωlum = −1

ρ

∂p

∂xk
+

∂Ω
∂xk

,

where Ω is the potential for the conservative body force. The gradient terms
disappear when we take the curl, but the pressure term doesn’t since ρ is no
longer constant. As shown in lectures,

[∇× (ω × u)]i = εijk
∂

∂xj
(εklmωlum)

=
∂

∂xj
(ωiuj − ωjui)

= (u·∇)ωi + (∇·u)ωi − (ω·∇)ui.

For the pressure term,

εijk
∂

∂xj

(
1
ρ

∂p

∂xk

)
= −εijk

ρ2

∂ρ

∂xj

∂p

∂xk
+ εijkρ

∂2p

∂xj∂xk

= −
(
∇ρ×∇p

ρ2

)
i

,

since the last term cancels by symmetry. Substituting in the original equation
gives in vector form

Dω

Dt
= (ω·∇)u− (∇·u)ω +

∇ρ×∇p

ρ2
.

By the product rule
D
Dt

ω

ρ
=

1
ρ

Dω

Dt
− ω

ρ2

Dρ

Dt
.

but the continuity equation gives Dρ/Dtρ = −ρ(∇·u). Combining this with the
previous result gives

D
Dt

ω

ρ
=

(
ω

ρ
·∇

)
u +

∇ρ×∇p

ρ3
.

The second term ρ−2∇ρ×∇p creates vorticity when isopycnals and isobars
are not aligned: it . It is the baroclinic torque or rate of vorticity generation due
to the baroclinicity of the flow. For barotropic flow, p is a function of ρ only and
the two gradients are aligned so the torque vanishes. We also see that in the
absence of this term, ω/ρ is transported like a line element.
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