Solutions Homework 4

$1 A$ is real so $\psi=2 A x y$. Streamlines are lines of constant $\psi=x y$, i.e. hyperbolae. The major and minor axes are the coordinate axes. The velocity field is $2 A(x,-y)$, so if $A>0$ the flow goes away from the y axis, and if $A<0$ it goes away from the x axis. We have $|\mathbf{u}|=2|A| \sqrt{x^{2}+y^{2}}=2|A| r$, so the speed is everywhere proportional to the distance from the origin.

2 Assume steady, incompressible, inviscid and irrotational flow. Consider the problem of the full cylinder with incoming flow at infinity $\mathbf{u}=U \mathbf{e}_{x}$. We have seen in class that $y=0$ is a streamline for that flow. Therefore the flow above the x-axis is not modified if $y=0$ is replaced by a solid boundary (here the ground), which is the configuration of a "Quonset hut". We therefore know the velocity potential in the fluid is $\phi=U \cos \theta\left(r+a^{2} / r\right)$, where a is the radius of the cylinder. The velocity on the boundary of the cylinder is $\mathbf{u}=-2 U \sin \theta \mathbf{e}_{\theta}$. Applying irrotational Bernoulli between a point at infinity and a point on the surface of the cylinder leads to

$$
p=p_{\infty}+\frac{1}{2} \rho_{\infty} U_{\infty}^{2}\left(1-4 \sin ^{2} \theta\right)
$$

It is given that the pressure inside the cylinder is p_{∞}. Therefore the pressure force on the cylinder is $\mathbf{F}=\int\left(p_{\infty}-p\right) \mathbf{e}_{r} a \mathrm{~d} \theta$. Projecting along the x-axis, we find $F_{x}=0$ by symmetry. Along the y-axis,
$F_{y}=a \int_{0}^{\pi}\left(p_{\infty}-p\right) \sin \theta \mathrm{d} \theta=-\frac{1}{2} \rho_{\infty} U_{\infty}^{2} a \int_{0}^{\pi}\left(1-4 \sin ^{2} \theta\right) \sin \theta \mathrm{d} \theta=\frac{5}{3} \rho_{\infty} U_{\infty}^{2} a$.
This force is directing upward (the pressure outside is less than the pressure inside). Numerically, $a=3 \mathrm{~m}, U_{\infty}=40 \mathrm{~m} / \mathrm{s}$ and $\rho_{\infty}=1.23 \mathrm{~kg} / \mathrm{m}^{3}$. The force per unit depth is therefore $F_{y}=9.84 \times 10^{3} \mathrm{~N} / \mathrm{m}$.

3 The moment about the origin of the pressure force $\mathrm{d} \mathbf{f}=-p \mathbf{n} \mathrm{~d} l$ is $\mathrm{d} T=$ $x \mathrm{~d} f_{y}-y \mathrm{~d} f_{x}$. Since $\mathbf{n} \mathrm{d} l=(\mathrm{d} y,-\mathrm{d} x)$, we haved $T=p(x \mathrm{~d} x+y \mathrm{~d} y)=\operatorname{Re}(p z \mathrm{~d} \bar{z})$. Bernoulli gives

$$
p=p_{\infty}+\frac{1}{2} \rho U_{\infty}^{2}-\frac{1}{2} \rho \frac{\mathrm{~d} w}{\mathrm{~d} z} \frac{\overline{\mathrm{~d} w}}{\mathrm{~d} z}
$$

Integrating over the whole boundary gives

$$
T=\operatorname{Re}\left[\oint_{C}\left(p_{\infty}+\frac{1}{2} \rho U_{\infty}^{2}-\frac{1}{2} \rho \frac{\mathrm{~d} w}{\mathrm{~d} z} \frac{\overline{\mathrm{~d} w}}{\mathrm{~d} z}\right) z \mathrm{~d} \bar{z}\right]
$$

The quantity $p_{\infty}+\frac{1}{2} \rho U_{\infty}^{2}$ is constant and can therefore be taken out of the integral. Furthermore, $\operatorname{Re}\left(\oint_{C} z \mathrm{~d} \bar{z}\right)=\frac{1}{2} \oint_{C}(z \mathrm{~d} \bar{z}+\bar{z} \mathrm{~d} z)=\frac{1}{2} \oint_{C} \mathrm{~d}(z \bar{z})=0$ on a closed contour.

The boundary is rigid so the no-normal flow condition is satisfied. That means that the boundary is a streamline. Along the boundary $\mathrm{d} \psi=\operatorname{Im}(\mathrm{d} w)=$ 0 and hence $(\mathrm{d} w / \mathrm{d} z) \mathrm{d} z$ is a real number on the boundary. This can be rewritten as $(\mathrm{d} w / \mathrm{d} z) \mathrm{d} z=\overline{(\mathrm{d} w / \mathrm{d} z) \mathrm{d} z}=\overline{(\mathrm{d} w / \mathrm{d} z)} \mathrm{d} \bar{z}$. Substituting in into the expression for the moment, we obtain

$$
T=\operatorname{Re}\left(-\frac{\rho}{2} \oint_{C} z \frac{\mathrm{~d} w}{\mathrm{~d} z} \mathrm{~d} z\right)
$$

4 The velocity potential of a dipole in two dimensions is

$$
\phi=\frac{\mathbf{D} \cdot \mathbf{x}}{2 \pi r^{2}}
$$

The corresponding velocity field is

$$
u_{i}=\frac{\delta_{i j} r^{2}-2 x_{i} x_{j}}{2 \pi r^{4}} D_{j}
$$

We have one ipole at $(0, a)$ so that $\mathbf{x}=(x, y-a)$ and we take another with strength \mathbf{D}^{\prime} at $(0,-a)$ so that $\mathbf{x}^{\prime}=(x, y+a)$. On the wall $y=0$ and $r=r^{\prime}=$ $\sqrt{x^{2}+a^{2}}$. Hence the vertical velocity is

$$
v=\frac{2 a\left(D_{x}-D_{x}^{\prime}\right)+\left(2 r^{2}-2 a^{2}\right)\left(D_{y}+D_{y}^{\prime}\right)}{2 \pi r^{4}}
$$

For this to vanish, we take $\mathbf{D}^{\prime}=\left(D_{x},-D_{y}\right)$, i.e. the mirror image. Then

$$
u=\frac{\left(2 r^{2}-4 x^{2}\right) D_{x}+4 a x D_{y}}{2 \pi r^{4}}
$$

The force on the plate is $-\int\left(p-p_{\infty}\right) \mathrm{d} \mathbf{S}$, where \mathbf{n} points from the wall into the fluid, i.e. $\mathbf{n}=(0,1)$. Bernoulli gives $p_{\infty}=p+\frac{1}{2} \rho u^{2}$ on the wall. Hence the force is normal to the wall with

$$
F=\frac{1}{2} \rho \int_{-\infty}^{\infty}\left(\frac{\left(2 r^{2}-4 x^{2}\right) D_{x}+4 a x D_{y}}{2 \pi r^{4}}\right)^{2} \mathrm{~d} x
$$

The quantity F is positive so the force on the wall is positive, i.e. the force is up. Making the change of variable $x \rightarrow a x$ and writing $\mathbf{D}=D(\cos \alpha, \sin \alpha)$ gives

$$
F=\frac{\rho D^{2}}{2 \pi^{2} a^{3}} \int_{-\infty}^{\infty} \frac{\left[\left(1-x^{2}\right) \cos \alpha+2 x \sin \alpha\right]^{2}}{\left(1+x^{2}\right)^{4}} \mathrm{~d} x
$$

The integral can be shown to be equal to $\pi / 4$ so $F=\rho D^{2} / 8 \pi^{2} a^{3}$.

How can we calculate the integral? The easiest way is using contour integration. The integrand has a fourth-order pole at $z=\mathrm{i}$, so expand using $z=\mathrm{i}+\epsilon$:

$$
\frac{1}{16 \epsilon^{4}}\left[\left(2-2 \mathrm{i} \epsilon-\epsilon^{2}\right) c+2(\mathrm{i}+\epsilon) s\right]^{2}\left[1-\frac{1}{2} \mathrm{i} \epsilon\right]^{-4}=\cdots-\frac{\mathrm{i}}{8 \epsilon}+\cdots,
$$

writing c and s for the cosine and sine terms. The residue theorem now gives $2 \pi \mathrm{i} \times(-\mathrm{i} / 8)=\pi / 4$.

Another way is to make the substitution $x=\tan \theta$ and transform everything into linear trigonometric terms.

