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Solutions Homework 4

1 Aisreal so ¢ = 2Axy. Streamlines are lines of constant ¢ = xy, i.e. hyper-
bolae. The major and minor axes are the coordinate axes. The velocity field is
2A(x, —y), so if A > 0 the flow goes away from the y axis, and if A < 0 it goes
away from the z axis. We have |u| = 2|A4|\/22 + y2 = 2|A|r, so the speed is
everywhere proportional to the distance from the origin.

2 Assume steady, incompressible, inviscid and irrotational flow. Consider the
problem of the full cylinder with incoming flow at infinity u = Ue,. We have
seen in class that y = 0 is a streamline for that flow. Therefore the flow above
the z-axis is not modified if y = 0 is replaced by a solid boundary (here the
ground), which is the configuration of a “Quonset hut”. We therefore know
the velocity potential in the fluid is ¢ = U cos (r + a?/r), where a is the radius
of the cylinder. The velocity on the boundary of the cylinder is u = —2U sin fleg.
Applying irrotational Bernoulli between a point at infinity and a point on the
surface of the cylinder leads to
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P = Poo + §pooU020(1 — 45sin”6)
It is given that the pressure inside the cylinder is p,. Therefore the pressure
force on the cylinder is F = [(po, — p)e,adf. Projecting along the z-axis, we
find F,, = 0 by symmetry. Along the y-axis,
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This force is directing upward (the pressure outside is less than the pressure
inside). Numerically, a = 3 m, Uy, = 40 m/s and po, = 1.23 kg/ m3. The force
per unit depth is therefore F, = 9.84 x 103 N/m.

3 The moment about the origin of the pressure force df = —pndl is dT' =
zdf, — ydf,. Since ndl = (dy, —dz), we havedT = p(zdz + ydy) = Re(pzdz).
Bernoulli gives
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Integrating over the whole boundary gives
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The quantity p + $pUZ is constant and can therefore be taken out of the
integral. Furthermore, Re (§, 2dz) = % §,(2dz + zdz) = 5 §,d(22) =0ona
closed contour.

The boundary is rigid so the no-normal flow condition is satisfied. That
means that the boundary is a streamline. Along the boundary d¢) = Im(dw) =
0 and hence (dw/dz)dz is a real number on the boundary. This can be rewritten
as (dw/dz)dz = (dw/dz)dz = (dw/dz)dz. Substituting in into the expression
for the moment, we obtain
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4 The velocity potential of a dipole in two dimensions is
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The corresponding velocity field is
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We have one ipole at (0,a) so that x = (z,y — a) and we take another with
strength D’ at (0, —a) so that X’ = (z,y + a). Onthewally = 0and r = ' =
Va2 4 a?. Hence the vertical velocity is

_ 2a(Dy — Dg) + (2r? — 20°)(Dy + D))
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For this to vanish, we take D’ = (D, —D,), i.e. the mirror image. Then

(2r? — 42°)D, + daz D,
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The force on the plate is — f (p — Poo) dS, where n points from the wall into
the fluid, i.e. n = (0, 1). Bernoulli gives poc = p + % pu? on the wall. Hence the
force is normal to the wall with
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The quantity F is positive so the force on the wall is positive, i.e. the force is
up. Making the change of variable * — axz and writing D = D(cos a, sin «)
gives

pD? /°° [(1 — 2?) cos a + 2x sin a?
= .
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The integral can be shown to be equal to 7/4 so F' = pD?/872a3.



How can we calculate the integral? The easiest way is using contour in-
tegration. The integrand has a fourth-order pole at z = i, so expand using
z=1+e
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writing ¢ and s for the cosine and sine terms. The residue theorem now gives
27 x (—i/8) = 7/4.

Another way is to make the substitution z = tan§ and transform every-
thing into linear trigonometric terms.



