MAE210A: Fluid Mechanics I Fall Quarter 2006
http:/ /maecourses.ucsd.edu/mae210a

Solutions Homework 5

1 Gravity pulls the fluid downward, while viscous effects pull the fluid up-
ward close to the walls. In the lab frame, the flow is purely vertical and fully
developed so u = u(r)e.. Assuming steady flow and no pressure gradient on
the vertical, the vertical component of Navier Stokes is
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Solving for u by integrating twice in r gives u(r) = gr?/(4v) + Alogr + B with
A and B constants to be determined. u must remain finite at 7 = 0 so A = 0.
The wall is moving at velocity U upward, so u(a) = U with a the radius of the
pipe. Finally,

u(r) = 4%(7“2 —ad®)+U

(Note that in the frame moving with the pipe wall, the flow is identical to
the case seen in class for the pipe flow with an imposed pressure gradient:
gravity plays the role of the pressure gradient). The volume flux through any
horizontal section of the pipe is
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Two effects are in competition: for small U, gravity is dominant and the net
flow is downward. For large U, the viscous entrainment of the flow near the
wall dominates gravity and the net flow is upward. There exists a critical value
of U for which there is no net flow, namely U, = ga®/(8v).

2 The flow is of the form u = u4(r, t)eg. The boundary condition at the cylin-
der wall is ug(r = a,t) = Qa cos(wt). Ignoring transients u(r, t) takes the form
ug = Re(é(r)e'“?). The azimuthal component of Navier-Stokes is
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The velocity field and pressure gradient don’t depend on 6 (if 9p/96 is non-

zero, the pressure is multivalued).
Substituting for uy gives an equation for ¢:
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which can be rewritten as
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with ¢ finite everywhere in the domain.

The change of variable = r(1 +i)y/w/2v = r6~1(1 + i) with f(n) = ¢(r)
gives

P f ol + 0 = 1Df =0, fladT (1 +1)] = Qa.

We recognize here the equation for a modified Bessel function, which has two
solutions /; and K. K is not physical since it is infinite at = 0. Therefore
f(n) = cli(n). Substituting for n and applying the boundary condition at the
wall gives

and

Lo~ (1 +9)] o
ug(r,t) = QaRe {We } .

The characteristic length § gives the size of the boundary layer that forms
along the cylinder wall. For large §, (very viscous), we find solid body ro-
tation. For small J, there is a narrow boundary layer near the wall as in the
two-dimensional problem treated in class. See Figure 1.

3 The equation for the velocity field is, assuming stationary flow with no
body force,

1
(u-V)u = —;Vp + vV, u(z,y=0)=0, u(z,y — o00) ~ (az, —ay).

Take the curl of the Navier Stokes equation to obtain the scalar vorticity equa-
tion
ov  Ou

dx  y’
It is enough to check that u is a solution of the vorticity equation since no
constraint on the pressure is imposed.

Using the given form for u, w = —ax+/a/vf"”. The vorticity equation be-

comes
) (ofir) 5 (o)

which simplifies to

(uV)w = vViw, w=

f(iv) + ff/// _ f/f// -0 1)

Atn =0, u = 0. Therefore, f(0) = f/(0) = 0. At infinity, u ~ az imposes

f'(00) = 1, which is consistent with v ~ —ay (f ~ n at infinity). The governing
equation (1) can be rewritten as

(f/// _ f/2 + ff//)l — O7 or f/l/ _ f/2 +ff// =c
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Figure 1: ug(r,t)/ug(r, a) for different values of the characteristic distance § =

V2w

Atinfinity, f ~ n, therefore f"/(c0) = f"(c0) = 0 and ¢ = —1. Finally, the given
velocity field is a solution if and only if

=P H1=0, 0 f(O)=f(0)=0,  f(0)=1

This is a two-points boundary value problem that can be solved using a
shooting method: guess an initial value for f”(0), integrate the initial value
problem for f, check f’(o0) and iterate. The shooting is very sensitive to the
initial guess... (try f”(0) = 1.23). See Figure 2(a).

The outside flow is the stagnation point flow we have seen previously. Vis-
cosity leads to a boundary layer near the wall. The size of the boundary layer
is of ordery/v/a. We found f’(3) = 0.998, so at a distance of 3\/v/« from the
wall, the horizontal velocity is 99.8% of its outer value. See velocity field in
Figure 2(b)

4 The dimensional quantities for the problem are: characteristic velocity U
(for example imposed by boundary condition), thickness h, dynamic viscosity
L, gravity g, surface tension o and density p. There are three non dimensional
parameters: Reynolds number Re = pUh/u, Froude number Fr = U/+/gh and
Weber number We = pU?h/o.



LA i 77 77t rr
Vi A S S SS I
Lrrrrrs s s s s T
B A VN
D CaCa g A
B e PP
e I P PP
N NN
R N NN
| e e N NI NN NN NN Y
I T T R Y
ESSSR NN SN
PIOOONONNN N NN Y
DXOOSIOONONONON N NNV
+

P T T T S S TSN

5 @ ~ © 0 ©

u

~

10

x

(b) Velocity field for problem 3

(a) Profile of f/(n) for problem 3 obtained nu-

merically with the shooting method



