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Solutions Homework 5

1 Gravity pulls the fluid downward, while viscous effects pull the fluid up-
ward close to the walls. In the lab frame, the flow is purely vertical and fully
developed so u = u(r)ez . Assuming steady flow and no pressure gradient on
the vertical, the vertical component of Navier Stokes is
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Solving for u by integrating twice in r gives u(r) = gr2/(4ν) + A log r + B with
A and B constants to be determined. u must remain finite at r = 0 so A = 0.
The wall is moving at velocity U upward, so u(a) = U with a the radius of the
pipe. Finally,
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g

4ν
(r2 − a2) + U

(Note that in the frame moving with the pipe wall, the flow is identical to
the case seen in class for the pipe flow with an imposed pressure gradient:
gravity plays the role of the pressure gradient). The volume flux through any
horizontal section of the pipe is
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Two effects are in competition: for small U , gravity is dominant and the net
flow is downward. For large U , the viscous entrainment of the flow near the
wall dominates gravity and the net flow is upward. There exists a critical value
of U for which there is no net flow, namely Uc = ga2/(8ν).

2 The flow is of the form u = uθ(r, t)eθ. The boundary condition at the cylin-
der wall is uθ(r = a, t) = Ωa cos(ωt). Ignoring transients u(r, t) takes the form
uθ = Re(φ(r)eiωt). The azimuthal component of Navier–Stokes is
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The velocity field and pressure gradient don’t depend on θ (if ∂p/∂θ is non-
zero, the pressure is multivalued).

Substituting for uθ gives an equation for φ:

iωφ = ν
∂

∂r

(

1

r

∂

∂r
(rφ)

)

1



which can be rewritten as

r2φ′′ + rφ′ − (
iωr2

ν
+ 1)φ = 0, φ(a) = Ωa

with φ finite everywhere in the domain.

The change of variable η = r(1 + i)
√

ω/2ν = rδ−1(1 + i) with f(η) = φ(r)
gives

η2f ′′ + ηf ′ + (η2 − 1)f = 0, f [aδ−1(1 + i)] = Ωa.

We recognize here the equation for a modified Bessel function, which has two
solutions I1 and K1. K1 is not physical since it is infinite at η = 0. Therefore
f(η) = cI1(η). Substituting for η and applying the boundary condition at the
wall gives

φ(r) = Ωa
I1[rδ
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I1[aδ−1(1 + i)]

and

uθ(r, t) = ΩaRe
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.

The characteristic length δ gives the size of the boundary layer that forms
along the cylinder wall. For large δ, (very viscous), we find solid body ro-
tation. For small δ, there is a narrow boundary layer near the wall as in the
two-dimensional problem treated in class. See Figure 1.

3 The equation for the velocity field is, assuming stationary flow with no
body force,

(u·∇)u = −1

ρ
∇p + ν∇2

u, u(x, y = 0) = 0, u(x, y → ∞) ∼ (αx,−αy).

Take the curl of the Navier Stokes equation to obtain the scalar vorticity equa-
tion

(u·∇)ω = ν∇2ω, ω =
∂v

∂x
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.

It is enough to check that u is a solution of the vorticity equation since no
constraint on the pressure is imposed.

Using the given form for u, ω = −αx
√

α/νf ′′. The vorticity equation be-
comes
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which simplifies to

f (iv) + ff ′′′ − f ′f ′′ = 0 (1)

At η = 0, u = 0. Therefore, f(0) = f ′(0) = 0. At infinity, u ∼ αx imposes
f ′(∞) = 1, which is consistent with v ∼ −αy (f ∼ η at infinity). The governing
equation (1) can be rewritten as

(f ′′′ − f ′2 + ff ′′)′ = 0, or f ′′′ − f ′2 + ff ′′ = c
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Figure 1: uθ(r, t)/uθ(r, a) for different values of the characteristic distance δ =
√

2ν/ω

At infinity, f ∼ η, therefore f ′′′(∞) = f ′′(∞) = 0 and c = −1. Finally, the given
velocity field is a solution if and only if

f ′′′ − f ′2 + ff ′′ + 1 = 0, f(0) = f ′(0) = 0, f ′(∞) = 1

This is a two-points boundary value problem that can be solved using a
shooting method: guess an initial value for f ′′(0), integrate the initial value
problem for f , check f ′(∞) and iterate. The shooting is very sensitive to the
initial guess... (try f ′′(0) = 1.23). See Figure 2(a).

The outside flow is the stagnation point flow we have seen previously. Vis-
cosity leads to a boundary layer near the wall. The size of the boundary layer

is of order
√

ν/α. We found f ′(3) = 0.998, so at a distance of 3
√

ν/α from the
wall, the horizontal velocity is 99.8% of its outer value. See velocity field in
Figure 2(b)

4 The dimensional quantities for the problem are: characteristic velocity U
(for example imposed by boundary condition), thickness h, dynamic viscosity
µ, gravity g, surface tension σ and density ρ. There are three non dimensional
parameters: Reynolds number Re = ρUh/µ, Froude number Fr = U/

√
gh and

Weber number We = ρU2h/σ.
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(a) Profile of f ′(η) for problem 3 obtained nu-
merically with the shooting method
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(b) Velocity field for problem 3
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