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Final Solutions

1 We calculate
∇·u = y + 1 +

2z

1 + t2

and

∇× u =
(

∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y

)
= (0, 0,−x).

The equations for the pathline of a particle releasde from (1, 1, 1) at t = 0 are

dx

dt
= xy, x(0) = 1,

dy

dt
= y, y(0) = 1,

dz

dt
=

1 + z2

1 + t2
, z(0) = 1.

The second equation can be integrated directly: y(t) = et. Plugging this
result in the first equation and solving for x(t) leads to x(t) = exp (et − 1). The
third equation must be solved independently. Using separation of variables,
dt/(1 + t2) = dz/(1 + z2). Integrating from t = 0 (where z = 1) to t gives
arctan z = arctan t + π/4. Using trigonometric relations,

z = tan
(
arctan t +

π

4

)
=

tan π
4 + tan(arctan t)

1− tan π
4 tan(arctan t)

=
1 + t

1− t
.

The trajectory of this particle is therefore

x =
(

exp (et − 1), et,
1 + t

1− t

)
.

If a particle is released from the origin, u = v = 0 and at all times x = y = 0
for this particle. Hence such a particle moves along the z-axis. On this axis, u =(
0, 0, (1 + z2)/(1 + t2)

)
so u is parallel to the axis and the z-axis is a streamline.

Therefore a particle released from the origin moves along a streamline.

2 By conservation of volume of incompressible liquid in the glass the total
height doesn’t change and remain in the stirred case d1 +d2. In both cases, (be-
fore and after stirring), we assume that the fluid is at rest. The pressure is there-
fore hydrostatic: dp/dz = −ρg. Integrating from the bottom of the glass to the
top, the pressure at the bottom of the glass is given by pb = p0+g

∫ d1+d2

0
ρ(z)dz.

Before stirring we have two layers of homogeneous density,

pb1 = p0 + g(ρ1d1 + ρ2d2) = p0 + g(d1 + d2) ((1− α)ρ1 + αρ2)
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where α = d2/(d1 + d2) is the fraction of the height occupied by the vermouth.
The system is stably stratified so the lighter fluid (vodka) is on top: ρ2 > ρ1.

After stirring, there is one homogeneous layer of density ρe and pb2 =
p0 +ρeg(d1 +d2). The conservation of mass gives ρeV = ρ1(V −V2)+ρ2V2 with
V the total volume and V2 the volume of vermouth. V and V2 are the volumes
of 2 cones. The volume of a cone scales like the cube of its height therefore
V2/V1 = α3, and ρe = ρ1(1− α3) + ρ2α

3.

pb1 − pb2

g(d1 + d2)
= (1− α)ρ1 + αρ2 − (1− α3)ρ1 − α3ρ2 = α(1− α2)(ρ2 − ρ1) > 0

The pressure at the base of the glass goes down when the cocktail is stirred.
Phisically, in the unstirred case, the heavier fluid is concentrated in the base.
By stirring heavy fluid above the base is replaced by lighter fluid.

Two forces are applied to the grain: the buoyancy force (ρe − ρ3)gVg down-
ward and the Stokes drag 3πµlU where l is the diameter of the spheric grain
(Vg = π

6 l3) and U the velocity. Newton’s second law for the grain is:

ρ3VgU̇ = (ρe − ρ3)gVg − 3πµlU.

The terminal velocity corresponds to the permanent regime when U̇ = 0 and
the forces balance: 3πµlU = (ρe − ρ3)πgl3

6 . The terminal velocity is U = g(ρ3 −
ρe)l2/18µ.

3 In the local basis, u is parallel to t by definition: u = ut and the operator
u·∇ becomes u ∂

∂s . The steady Euler equation with constant density is (u.∇)u =
−∇p/ρ−∇Ω with the conservative body force g = −∇Ω. Hence

u
∂

∂s
(ut) = −1

ρ
∇p−∇Ω.

The left-hand side can be expanded using ∂t/∂s = n/R where R is the local
algebraic curvature radius of the streamline, giving

u
∂u

∂s
t +

u2

R
n =

∂

∂s

(
u2

2

)
t +

u2

R
n = −1

ρ
∇p−∇Ω.

Projecting onto t, n and b respectively leads to

∂

∂s

(
u2

2
+

1
ρ

p

ρ
+ Ω

)
= 0,

u2

R
= − ∂

∂n

(
p

ρ
+ Ω

)
,

∂

∂b

(
p

ρ
+ Ω

)
= 0

The first equation is the steady Bernoulli equation (the Bernoulli function is
constant on the streamline). The second equation shows that the centripetal
acceleration is balanced by the normal gradient of pressure and potential. The
last equation indicates that there is no net force applied to the fluid in the bi-
normal direction.
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4 The flow is radial and spherically symmetric, so u = urer. The vorticity of
such a flow vanishes, so there is a velocity potential, φ(r), satisfying Laplace’s
equation. At the surface of the bubble the normal velocity of the fluid is equal
to the velocity of the boundary, i.e. ∂φ/∂r = Ṙ at r = R(t). Assuming no flow
at infinity, ∂φ/∂r → 0 as r →∞. Hence φ satisfies the problem

∇2φ =
1
r2

∂

∂r

(
r2 ∂φ

∂r

)
= 0,

∂φ

∂r
(r =∞) = 0,

∂φ

∂r
(r = R(t)) = Ṙ(t).

Solving the differential equation for φ gives φ = α(t)/r + β(t). The function
β(t) can be set to zero (this does not change the velocity field). Applying the
boundary condition at the surface of the bubble gives α(t) = −R2Ṙ. This leads
to φ(r, t) = −R2Ṙ/r.

The irrotational Bernoulli theorem states that p/ρ + u2/2 + ∂φ/∂t is a con-
stant everywhere in the fluid. At infinity, ∂φ/∂t and ∂φ/∂r are zero and p =
p∞, so

p = p∞ − ρ

[
∂φ

∂t
+

1
2

(
∂φ

∂r

)2
]

= p∞ + ρ

(
2RṘ2 + R2R̈

r
− R4Ṙ2

2r4

)
.

(i) If the pressure is negligible inside the bubble, the boundary condition at
the surface of the bubble is p. Applying the previous relation at r = R(t) leads
to:

0 =
p∞
ρ

+ RR̈ +
3
2
Ṙ2

[Extra: we can rewrite this equation as

d
dt

(
2p∞R3

3ρ
+ R3Ṙ2

)
= 0.

Integrating in time with initial radius R0 and no initial velocity gives

Ṙ2 =
2p∞
3ρ

(
R3

0

R3
− 1
)

Since the radius of the bubble is decreasing

Ṙ = −

√
2p∞
3ρ

(
R3

0

R3
− 1
)

.

]

(ii) Assuming adiabatic behavior for the gas, pρ−γ is a constant. By con-
servation of mass in the bubble, ρ/ρ0 = (R0/R)3 and p = p0(R0/R)3γ . The
equation of motion for R(t) is then

p∞ + ρ

(
3
2
Ṙ2 + RR̈

)
= p0

(
R0

R

)3γ

.
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5 The velocity is assumed axial in both layers ui = uiez with i = 1, 2 refers
to the two different layers. The flow is fully developped, axisymmetric and
steady (the velocity does not depend on θ, z or t). Therefore Du

Dt = 0, the Navier
Stokes equations become:

0 = − 1
ρ

∂p
∂x + µ

r
d
dr (r du

dr )
0 = − 1

ρ
∂p
∂r

− 1
ρr

∂p
∂θ

Therefore the pressure is only a function of x. The first equation shows that
the pressure gradient is only a function of r, therefore the pressure gradient
is a constant dp/dx = −∆p/L with ∆p the pressure drop over a distance L.
Let’s define Px = −∆p/ρL. Integrating the axial component of Navier Stokes
in each layer gives

ui(r) = −Pxr2

4µi
+ Ai log r + Bi.

The velocity also satisfies the following boundary conditions

u1(0) = finite, u1(a) = u2(a), µ1
du1

dr
(a) = µ2

du2

dr
(a), u2(b) = 0

The first condition imposes that A1 = 0. The third condition becomes
−Pxa/2 = −Pxa/2+µ2A2/a leading to A2 = 0. The fourth condition then gives
B2 = Pxb2/4µ2. Substitution in the second condition gives A1 = Pxa2/4µ1 −
Px(a2 − b2)/4µ2. Finally the velocity profile in the pipe is:

u1(r) = Px(a2−r2)
4µ1

+ Px(b2−a2)
4µ2

, for 0 ≤ r ≤ a

u2(r) = Px(b2−r2)
4µ2

, for a ≤ r ≤ b

The volume flux in the pipe is Q = 2π
∫ b

0
u(r)rdr.

Q = 2π

[∫ a

0

(
Px(a2 − r2)

4µ1
+

Px(b2 − a2)
4µ2

)
rdr +

∫ b

a

Px(b2 − r2)
4µ2

rdr

]

= 2π

[
Pxa4

16µ1
+

Px(b2 − a2)a2

8µ2
+

Px

4µ2

(
b2

2
(b2 − a2)− 1

4
(b4 − a4)

)]
= 2πPx

[
a4

16µ1
+

b4 − a4

16µ2

]
The shear stress is τ = µdu/dr. Evaluated at the wall, τw = −Pxb/2. This

result could have been obtained writing the force balance on a cylindrical sec-
tion of the fluid of thickness dx. The pressure force Pxdxπb2ex is balanced by
the viscous friction at the wall 2πbdxτwex. Note that the shear stress is only a
function of the pressure gradient applied and not of the viscosity of the fluids.
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6 We assume a relation of the form t = f(l, d,D, µ,∆ρ). There are 6 dimen-
sional quantities and 3 independent units. From the π theorem, there are 3
dimensionless parameters, for example: tµ/d2∆ρ, d/D and d/l. The relation
simplifies into t = d2∆ρ

µ g(d/D, l/D). The parameters d, D and l depend only
on the experimental setup. Assuming that we have done the measurement for
a know fluid, we have been able to determine g(d/D, l/D). Using a different
fluid of know density, repeating the experiment we can compute µ.
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