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Final Solutions

1 Use dx;/dx; = ¢;;. Incompressibility:
8ui
— =a; = 0.
axl 1
Irrotationality:
€ijk 5k X1 = €ijrrj = 0.
x;

One can either multiply by €,,; or write out in suffices to find a;; = a;;. This means the
matrix with elements a;; is symmetric. In class, we saw that any flow can be decom-
posed locally into an antisymmetric part relate to vorticity and a symmetric part related
to strain. If the flow is irrotational, the vorticity vanishes and the velocity gradient tensor
is symmetric, i.e. a;; = a;;. The velocity potential is then ¢ = %aijxixj as can be checked.

2 Particle path: solve

dx %_ dz_

E:(t—l—cost)y, TR Fri

The second equation shows that y is constant. Using the initial conditions one obtains

—Z.

2
x(t) = % Fsint+1, oy =1, z(t)=et.

Streaklines: solve the particle path equations with initial position (1,1,1) at f = ¢, giving

2 2

t t
x(t ) = 5 +sint — 5* —sint, +1,  y(tt) =1,  z(tt,) ="
Att = 7, these give
2 2
x(te) = j—f—sint*—l—l, y(t) =1,  z(t,) =el 7

for 0 <t < 7. Streamlines at t = 0: solve

d

dx _dy _ _dz _ .
y 0 z

This gives y = yo, x = yps + xp and z = e °zp with s = 0 corresponding to the point
(x0,Y0,20)- This can also be written as

y=yo,  z=zge TR/,



3 The upper surface is at z and has velocity v. The exit is at 0 and has velocity vy. By
mass conservation we have

mth(z)*v = th(0)%v,.

Apply Bernoulli’s equation on a streamline from the upper surface to the outlet. Assume
that at the outlet the flow comes out as a constant-diameter jet so that the pressure there
is atmospheric. Then we have

We require v to be constant in time, so this is not an ordinary differential equation but just
an algebraic relation. The profile h(z) is given by

4 For fully-developed flow, 0y = dg = 0. The momentum equation reduces to

0= 11 1/%
Cordr \ dr )’
where u is the velocity in the x-direction. The solution is u = A 4 Blogr. The boundary
conditions give

log (r/b)

"= ulog (a/b)’

The volume flux is

v log(r/b) B ( b2 — a2 B 2)
Q = /u Ulog(—a/b)ZTCr dr=Ur —log (g/b) a .

The average velocity is

- Q 1 a?
U= (b2 —a2) u (log(a/b) a bz—az)'

The stress at the boundaries is udu/dr, which is uUr~!(log (a/b))~!. The force on the
boundary is hence

S
blog (a/b)

uld _ 2mLuld

—(27bL) alog (a/b)  log (b/a)’

— (2mal)

It acts in the direction of U.



5 Aisreal sop = 2Axy. Streamlines are lines of constant i = xy, i.e. hyperbolae. The
major and minor axes are the coordinate axes. The velocity field is 2A(x, —y), soif A > 0
the flow goes away from the y axis, and if A < 0 it goes away from the x axis. We have
lu| = 2|A|\/x?+y*> = 2|Alr, so the speed is everywhere proportional to the distance
from the origin. Call the sides 1, 2, 3 and 4 going anticlockwise and starting at the origin.
The normal velocity is 0 for sides 1 and 4, so the mass and momentum fluxes through
them are zero. For the other sides, the mass fluxes out are

) ) l )
Q= / pudy = / p2Aldy = 2A0%, Qs = / pvdx = / o(—2Al)dy = —2A1%p;
0 0 0 0

their sum is zero as expected. The momentum fluxes out in the x- and y-directions are

! !
M, = /puzdy:/ 0(2A1)*dy = 4A%PPp,
0 0
! I
M; = /puvdx:/ 0(2Ax)(—2Al)dy = —2A%Pp
0 0

and

N, = /Ol puvdy = /OZ 0(2Al)(—2Ay)dy = —2A%Pp,

M; = /Ol pv?dx = /Ol o(—2A1)? dy = 4A%p.
Their sum is not zero (so there must be other terms in the steady momentum balance).
6 Units: w is inverse time [T] ! and A is length [L]. The units of other quantities are
hilLl, g [L[T)72, T+ [M)[T)2, o (ML), ps [M[L] 1 [T]

We have seven parameters and three units (length, time and mass) so we can construct
7 — 3 = 4 dimensionless groups. Four possible non-dimensional groups are

pgh*’ p\/gh3

h A T U
h

Hence we have




