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Final Solutions

1 Use ∂xi/∂xj = δij. Incompressibility:

∂ui

∂xi
= aii = 0.

Irrotationality:

εijk
∂

∂xj
aklxl = εijkakj = 0.

One can either multiply by εpqi or write out in suffices to find aij = aji. This means the
matrix with elements aij is symmetric. In class, we saw that any flow can be decom-
posed locally into an antisymmetric part relate to vorticity and a symmetric part related
to strain. If the flow is irrotational, the vorticity vanishes and the velocity gradient tensor
is symmetric, i.e. aij = aji. The velocity potential is then φ = 1

2 aijxixj as can be checked.

2 Particle path: solve

dx
dt

= (t + cos t)y,
dy
dt

= 0, ,
dz
dt

= −z.

The second equation shows that y is constant. Using the initial conditions one obtains

x(t) =
t2

2
+ sin t + 1, y(t) = 1, z(t) = e−t.

Streaklines: solve the particle path equations with initial position (1, 1, 1) at t = t∗, giving

x(t, t∗) =
t2

2
+ sin t− t2

∗
2
− sin t∗ + 1, y(t, t∗) = 1, z(t, t∗) = et∗−t.

At t = π, these give

x(t∗) =
π2

2
− t2
∗
2
− sin t∗ + 1, y(t∗) = 1, z(t∗) = et∗−π

for 0 ≤ t ≤ π. Streamlines at t = 0: solve

dx
y

=
dy
0

= −dz
z

= ds.

This gives y = y0, x = y0s + x0 and z = e−sz0 with s = 0 corresponding to the point
(x0, y0, z0). This can also be written as

y = y0, z = z0e−(x−x0)/y0 .
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3 The upper surface is at z and has velocity v. The exit is at 0 and has velocity v0. By
mass conservation we have

πh(z)2v = πh(0)2v0.

Apply Bernoulli’s equation on a streamline from the upper surface to the outlet. Assume
that at the outlet the flow comes out as a constant-diameter jet so that the pressure there
is atmospheric. Then we have

gz + 1
2 v2 = 1

2 v2
0.

Eliminate v0 from these two equations:

gz + 1
2 v2 = 1

2 v2 h(z)4

h(0)4 .

We require v to be constant in time, so this is not an ordinary differential equation but just
an algebraic relation. The profile h(z) is given by

h(z) = h(0)
(

1 +
2gz
v2

)1/4

.

4 For fully-developed flow, ∂x = ∂θ = 0. The momentum equation reduces to

0 =
1
r

d
dr

(
r

du
dr

)
,

where u is the velocity in the x-direction. The solution is u = A + B log r. The boundary
conditions give

u = U
log (r/b)
log (a/b)

.

The volume flux is

Q =
∫ b

a
U

log (r/b)
log (a/b)

2πr dr = Uπ

(
b2 − a2

log (a/b)
− a2

)
.

The average velocity is

U =
Q

π(b2 − a2)
= U

(
1

log (a/b)
− a2

b2 − a2

)
.

The stress at the boundaries is µdu/dr, which is µUr−1(log (a/b))−1. The force on the
boundary is hence

−(2πbL)
µU

b log (a/b)
− (2πaL)

µU
a log (a/b)

=
2πLµU

log (b/a)
.

It acts in the direction of U.
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5 A is real so ψ = 2Axy. Streamlines are lines of constant ψ = xy, i.e. hyperbolae. The
major and minor axes are the coordinate axes. The velocity field is 2A(x,−y), so if A > 0
the flow goes away from the y axis, and if A < 0 it goes away from the x axis. We have
|u| = 2|A|

√
x2 + y2 = 2|A|r, so the speed is everywhere proportional to the distance

from the origin. Call the sides 1, 2, 3 and 4 going anticlockwise and starting at the origin.
The normal velocity is 0 for sides 1 and 4, so the mass and momentum fluxes through
them are zero. For the other sides, the mass fluxes out are

Q2 =
∫ l

0
ρu dy =

∫ l

0
ρ2Al dy = 2Al2ρ, Q3 =

∫ l

0
ρv dx =

∫ l

0
ρ(−2Al)dy = −2Al2ρ;

their sum is zero as expected. The momentum fluxes out in the x- and y-directions are

M2 =
∫ l

0
ρu2 dy =

∫ l

0
ρ(2Al)2 dy = 4A2l3ρ,

M3 =
∫ l

0
ρuv dx =

∫ l

0
ρ(2Ax)(−2Al)dy = −2A2l3ρ

and

N2 =
∫ l

0
ρuv dy =

∫ l

0
ρ(2Al)(−2Ay)dy = −2A2l3ρ,

M3 =
∫ l

0
ρv2 dx =

∫ l

0
ρ(−2Al)2 dy = 4A2l3ρ.

Their sum is not zero (so there must be other terms in the steady momentum balance).

6 Units: ω is inverse time [T]−1 and λ is length [L]. The units of other quantities are

h : [L], g : [L][T]−2, T : [M][T]−2, ρ : [M][L]−3, µ : [M][L]−1[T]−1.

We have seven parameters and three units (length, time and mass) so we can construct
7− 3 = 4 dimensionless groups. Four possible non-dimensional groups are

ω

√
h
g

,
λ

h
,

T
ρgh2 ,

µ

ρ
√

gh3
.

Hence we have

ω =

√
g
h

F

(
λ

h
,

T
ρgh2 ,

µ

ρ
√

gh3

)
.
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