Final Solutions

1 Use $\partial x_{i} / \partial x_{j}=\delta_{i j}$. Incompressibility:

$$
\frac{\partial u_{i}}{\partial x_{i}}=a_{i i}=0
$$

Irrotationality:

$$
\epsilon_{i j k} \frac{\partial}{\partial x_{j}} a_{k l} x_{l}=\epsilon_{i j k} a_{k j}=0
$$

One can either multiply by $\epsilon_{p q i}$ or write out in suffices to find $a_{i j}=a_{j i}$. This means the matrix with elements $a_{i j}$ is symmetric. In class, we saw that any flow can be decomposed locally into an antisymmetric part relate to vorticity and a symmetric part related to strain. If the flow is irrotational, the vorticity vanishes and the velocity gradient tensor is symmetric, i.e. $a_{i j}=a_{j i}$. The velocity potential is then $\phi=\frac{1}{2} a_{i j} x_{i} x_{j}$ as can be checked.

2 Particle path: solve

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=(t+\cos t) y, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=0, \quad \frac{\mathrm{~d} z}{\mathrm{~d} t}=-z
$$

The second equation shows that y is constant. Using the initial conditions one obtains

$$
x(t)=\frac{t^{2}}{2}+\sin t+1, \quad y(t)=1, \quad z(t)=\mathrm{e}^{-t}
$$

Streaklines: solve the particle path equations with initial position $(1,1,1)$ at $t=t_{*}$, giving

$$
x\left(t, t_{*}\right)=\frac{t^{2}}{2}+\sin t-\frac{t_{*}^{2}}{2}-\sin t_{*}+1, \quad y\left(t, t_{*}\right)=1, \quad z\left(t, t_{*}\right)=\mathrm{e}^{t_{*}-t}
$$

At $t=\pi$, these give

$$
x\left(t_{*}\right)=\frac{\pi^{2}}{2}-\frac{t_{*}^{2}}{2}-\sin t_{*}+1, \quad y\left(t_{*}\right)=1, \quad z\left(t_{*}\right)=\mathrm{e}^{t_{*}-\pi}
$$

for $0 \leq t \leq \pi$. Streamlines at $t=0$: solve

$$
\frac{\mathrm{d} x}{y}=\frac{\mathrm{d} y}{0}=-\frac{\mathrm{d} z}{z}=\mathrm{d} s
$$

This gives $y=y_{0}, x=y_{0} s+x_{0}$ and $z=\mathrm{e}^{-s} z_{0}$ with $s=0$ corresponding to the point $\left(x_{0}, y_{0}, z_{0}\right)$. This can also be written as

$$
y=y_{0}, \quad z=z_{0} \mathrm{e}^{-\left(x-x_{0}\right) / y_{0}} .
$$

3 The upper surface is at z and has velocity v. The exit is at 0 and has velocity v_{0}. By mass conservation we have

$$
\pi h(z)^{2} v=\pi h(0)^{2} v_{0}
$$

Apply Bernoulli's equation on a streamline from the upper surface to the outlet. Assume that at the outlet the flow comes out as a constant-diameter jet so that the pressure there is atmospheric. Then we have

$$
g z+\frac{1}{2} v^{2}=\frac{1}{2} v_{0}^{2} .
$$

Eliminate v_{0} from these two equations:

$$
g z+\frac{1}{2} v^{2}=\frac{1}{2} v^{2} \frac{h(z)^{4}}{h(0)^{4}}
$$

We require v to be constant in time, so this is not an ordinary differential equation but just an algebraic relation. The profile $h(z)$ is given by

$$
h(z)=h(0)\left(1+\frac{2 g z}{v^{2}}\right)^{1 / 4}
$$

4 For fully-developed flow, $\partial_{x}=\partial_{\theta}=0$. The momentum equation reduces to

$$
0=\frac{1}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d} u}{\mathrm{~d} r}\right)
$$

where u is the velocity in the x-direction. The solution is $u=A+B \log r$. The boundary conditions give

$$
u=U \frac{\log (r / b)}{\log (a / b)}
$$

The volume flux is

$$
Q=\int_{a}^{b} U \frac{\log (r / b)}{\log (a / b)} 2 \pi r \mathrm{~d} r=U \pi\left(\frac{b^{2}-a^{2}}{\log (a / b)}-a^{2}\right) .
$$

The average velocity is

$$
\bar{U}=\frac{Q}{\pi\left(b^{2}-a^{2}\right)}=U\left(\frac{1}{\log (a / b)}-\frac{a^{2}}{b^{2}-a^{2}}\right)
$$

The stress at the boundaries is $\mu \mathrm{d} u / \mathrm{d} r$, which is $\mu U r^{-1}(\log (a / b))^{-1}$. The force on the boundary is hence

$$
-(2 \pi b L) \frac{\mu U}{b \log (a / b)}-(2 \pi a L) \frac{\mu U}{a \log (a / b)}=\frac{2 \pi L \mu U}{\log (b / a)} .
$$

It acts in the direction of U.
$5 \quad A$ is real so $\psi=2 A x y$. Streamlines are lines of constant $\psi=x y$, i.e. hyperbolae. The major and minor axes are the coordinate axes. The velocity field is $2 A(x,-y)$, so if $A>0$ the flow goes away from the y axis, and if $A<0$ it goes away from the x axis. We have $|\boldsymbol{u}|=2|A| \sqrt{x^{2}+y^{2}}=2|A| r$, so the speed is everywhere proportional to the distance from the origin. Call the sides 1, 2, 3 and 4 going anticlockwise and starting at the origin. The normal velocity is 0 for sides 1 and 4 , so the mass and momentum fluxes through them are zero. For the other sides, the mass fluxes out are

$$
Q_{2}=\int_{0}^{l} \rho u \mathrm{~d} y=\int_{0}^{l} \rho 2 A l \mathrm{~d} y=2 A l^{2} \rho, \quad Q_{3}=\int_{0}^{l} \rho v \mathrm{~d} x=\int_{0}^{l} \rho(-2 A l) \mathrm{d} y=-2 A l^{2} \rho ;
$$

their sum is zero as expected. The momentum fluxes out in the x - and y-directions are

$$
\begin{aligned}
& M_{2}=\int_{0}^{l} \rho u^{2} \mathrm{~d} y=\int_{0}^{l} \rho(2 A l)^{2} \mathrm{~d} y=4 A^{2} l^{3} \rho \\
& M_{3}=\int_{0}^{l} \rho u v \mathrm{~d} x=\int_{0}^{l} \rho(2 A x)(-2 A l) \mathrm{d} y=-2 A^{2} l^{3} \rho
\end{aligned}
$$

and

$$
\begin{aligned}
& N_{2}=\int_{0}^{l} \rho u v \mathrm{~d} y=\int_{0}^{l} \rho(2 A l)(-2 A y) \mathrm{d} y=-2 A^{2} l^{3} \rho, \\
& M_{3}=\int_{0}^{l} \rho v^{2} \mathrm{~d} x=\int_{0}^{l} \rho(-2 A l)^{2} \mathrm{~d} y=4 A^{2} l^{3} \rho .
\end{aligned}
$$

Their sum is not zero (so there must be other terms in the steady momentum balance).

6 Units: ω is inverse time $[T]^{-1}$ and λ is length $[L]$. The units of other quantities are

$$
h:[L], g:[L][T]^{-2}, T:[M][T]^{-2}, \rho:[M][L]^{-3}, \mu:[M][L]^{-1}[T]^{-1}
$$

We have seven parameters and three units (length, time and mass) so we can construct $7-3=4$ dimensionless groups. Four possible non-dimensional groups are

$$
\omega \sqrt{\frac{h}{g}}, \quad \frac{\lambda}{h}, \quad \frac{T}{\rho g h^{2}}, \quad \frac{\mu}{\rho \sqrt{g h^{3}}} .
$$

Hence we have

$$
\omega=\sqrt{\frac{g}{h}} F\left(\frac{\lambda}{h}, \frac{T}{\rho g h^{2}}, \frac{\mu}{\rho \sqrt{g h^{3}}}\right) .
$$

