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Solution V

1 If the flow is steady we have
1, dp _
§|u| + / ? = B/
along a streamline. If the flow is irrotational we have
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The interesting part is the pressure term. For an isentropic perfect gas we have p = xp7,
where x and 1 are constants. Then dp = xyp? ! dp so
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The speed of sound squared is defined to be the derivative of pressure with respect to
pressure (for some given thermodynamic state). For an isentropic gas,
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and the result follows.

2 Assume the flow is quasi-static, i.e. the vessel is large enough for steady Bernoulli to
apply at each instant. This means we also neglect the velocity of the free surface in the
equation. Steady Bernoulli along a streamline connecting the free surface and the orifice
then gives
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where v is the velocity at the orifice. Conservation of volume then gives vA = ht(2Rh —
h?). Putting these together gives

1P A2 (2Rh — h?)? = gh.



Separate variables:
dt = (2RKY? — 13/2) dh.
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where we need a minus sign since / is decreasing as t increases. Integrate from 0 to t and
hy to hy respectively. Then
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3 Conservation of mass gives v(z) A(z) = vpAyp, assuming the velocity is uniform across
the stream. Steady Bernoulli along a streamline leads to v(z)?/2 + gz + p(z)/p = v3 +
po/p. Take a streamline along the boundary, so p(z) = po is atmospheric pressure. This
gives
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This can be solved to give

4 (i) The flow is inviscid and incompressible. It is radially symmetric so it is also irrota-
tional. Hence the velocity potential ¢ exists and satisfies Laplace’s equation

Vi =

The spherically symmetric non-trivial solution to Laplace’s equation is ¢ = Ar~!. The
boundary condition at the surface of the bubble requires the normal velocity to be contin-
uous. This gives R = —A/r? atr = R, so
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(ii) The flow is irrotational with constant density, and gravity does not act, so the quantity
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is constant in the fluid. For large r, the velocity vanishes, and hence B = p/p, where pe
is the pressure far from the bubble. Computing the time-derivative of ¢ gives
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(iii) If the pressure is neglected inside the bubble, p = 0 at the surface of the bubble r = R

Hence
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This equation can be integrated in time to give

The constant C is fixed by taking R = Ry when R = 0. Separating variables and noting
that R is negative gives
3p dR
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Integrating the left-hand side from 0 to t. and the right-hand side from Ry to 0 gives
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