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Solution V

1 If the flow is steady we have

1
2
|u|2 +

∫ dp
ρ

= B,

along a streamline. If the flow is irrotational we have

∂φ

∂t
+

1
2
|u|2 +

∫ dp
ρ

= B(t).

The interesting part is the pressure term. For an isentropic perfect gas we have p = κργ,
where κ and γ are constants. Then dp = κγργ−1 dρ so∫ dp

ρ
= κγ

∫
ργ−2 dρ =

κγργ−1

γ− 1
=

1
γ− 1

γp
ρ

.

The speed of sound squared is defined to be the derivative of pressure with respect to
pressure (for some given thermodynamic state). For an isentropic gas,

c2 ≡ dp
dρ

=
d(κργ)

dρ
= γκργ−1 =

γp
ρ

.

Hence ∫ dp
ρ

=
c2

γ− 1

and the result follows.

2 Assume the flow is quasi-static, i.e. the vessel is large enough for steady Bernoulli to
apply at each instant. This means we also neglect the velocity of the free surface in the
equation. Steady Bernoulli along a streamline connecting the free surface and the orifice
then gives

gh = 1
2 v2

where v is the velocity at the orifice. Conservation of volume then gives vA = ḣπ(2Rh−
h2). Putting these together gives

1
2 ḣ2A−2π2(2Rh− h2)2 = gh.
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Separate variables:

dt = − π

A
√

2g
(2Rh1/2 − h3/2)dh.

where we need a minus sign since h is decreasing as t increases. Integrate from 0 to t and
h1 to h2 respectively. Then

t =
π

A
√

2g

[
2
3

R(h3/2
1 − h3/2

2 )− 1
5
(h5/2

1 − h5/2
2 )

]
.

3 Conservation of mass gives v(z)A(z) = v0A0, assuming the velocity is uniform across
the stream. Steady Bernoulli along a streamline leads to v(z)2/2 + gz + p(z)/ρ = v2

0 +
p0/ρ. Take a streamline along the boundary, so p(z) = p0 is atmospheric pressure. This
gives

(v0A0)
2

2A(z)2 + gz =
v2

0
2

.

This can be solved to give

A(z) =
A0√

(1− 2gz/v2
0)

.

4 (i) The flow is inviscid and incompressible. It is radially symmetric so it is also irrota-
tional. Hence the velocity potential φ exists and satisfies Laplace’s equation

∇2φ = 0.

The spherically symmetric non-trivial solution to Laplace’s equation is φ = Ar−1. The
boundary condition at the surface of the bubble requires the normal velocity to be contin-
uous. This gives Ṙ = −A/r2 at r = R, so

φ = −R2Ṙ
r

.

(ii) The flow is irrotational with constant density, and gravity does not act, so the quantity

∂φ

∂t
+

1
2
|∇φ|2 + p

ρ
= B

is constant in the fluid. For large r, the velocity vanishes, and hence B = p∞/ρ, where p∞
is the pressure far from the bubble. Computing the time-derivative of φ gives

p = p∞ + ρ

(
R2R̈

r
+

2RṘ2

r
− R4Ṙ2

2r4

)
.

(iii) If the pressure is neglected inside the bubble, p = 0 at the surface of the bubble r = R.
Hence

0 =
p∞

ρ
+ RR̈ +

3
2

Ṙ2.
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This equation can be integrated in time to give

C =
p∞R3

3ρ
+

1
2

R3Ṙ2.

The constant C is fixed by taking R = R0 when Ṙ = 0. Separating variables and noting
that Ṙ is negative gives

dt = −
√

3ρ

2p∞

dR
[(R0/R)3 − 1]1/2 .

Integrating the left-hand side from 0 to tc and the right-hand side from R0 to 0 gives

tc =

√
3ρ

2p∞

∫ R0

0
[(R0/R)3 − 1]−1/2 dR.
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