Solution V

1 If the flow is steady we have

$$
\frac{1}{2}|\boldsymbol{u}|^{2}+\int \frac{\mathrm{d} p}{\rho}=B
$$

along a streamline. If the flow is irrotational we have

$$
\frac{\partial \phi}{\partial t}+\frac{1}{2}|\boldsymbol{u}|^{2}+\int \frac{\mathrm{d} p}{\rho}=B(t) .
$$

The interesting part is the pressure term. For an isentropic perfect gas we have $p=\kappa \rho^{\gamma}$, where κ and γ are constants. Then $\mathrm{d} p=\kappa \gamma \rho^{\gamma-1} \mathrm{~d} \rho$ so

$$
\int \frac{\mathrm{d} p}{\rho}=\kappa \gamma \int \rho^{\gamma-2} \mathrm{~d} \rho=\frac{\kappa \gamma \rho^{\gamma-1}}{\gamma-1}=\frac{1}{\gamma-1} \frac{\gamma p}{\rho}
$$

The speed of sound squared is defined to be the derivative of pressure with respect to pressure (for some given thermodynamic state). For an isentropic gas,

$$
c^{2} \equiv \frac{\mathrm{~d} p}{\mathrm{~d} \rho}=\frac{\mathrm{d}\left(\kappa \rho^{\gamma}\right)}{\mathrm{d} \rho}=\gamma \kappa \rho^{\gamma-1}=\frac{\gamma p}{\rho} .
$$

Hence

$$
\int \frac{\mathrm{d} p}{\rho}=\frac{c^{2}}{\gamma-1}
$$

and the result follows.

2 Assume the flow is quasi-static, i.e. the vessel is large enough for steady Bernoulli to apply at each instant. This means we also neglect the velocity of the free surface in the equation. Steady Bernoulli along a streamline connecting the free surface and the orifice then gives

$$
g h=\frac{1}{2} v^{2}
$$

where v is the velocity at the orifice. Conservation of volume then gives $v A=\dot{h} \pi(2 R h-$ h^{2}). Putting these together gives

$$
\frac{1}{2} \dot{h}^{2} A^{-2} \pi^{2}\left(2 R h-h^{2}\right)^{2}=g h .
$$

Separate variables:

$$
\mathrm{d} t=-\frac{\pi}{A \sqrt{2 g}}\left(2 R h^{1 / 2}-h^{3 / 2}\right) \mathrm{d} h
$$

where we need a minus sign since h is decreasing as t increases. Integrate from 0 to t and h_{1} to h_{2} respectively. Then

$$
t=\frac{\pi}{A \sqrt{2 g}}\left[\frac{2}{3} R\left(h_{1}^{3 / 2}-h_{2}^{3 / 2}\right)-\frac{1}{5}\left(h_{1}^{5 / 2}-h_{2}^{5 / 2}\right)\right]
$$

3 Conservation of mass gives $v(z) A(z)=v_{0} A_{0}$, assuming the velocity is uniform across the stream. Steady Bernoulli along a streamline leads to $v(z)^{2} / 2+g z+p(z) / \rho=v_{0}^{2}+$ p_{0} / ρ. Take a streamline along the boundary, so $p(z)=p_{0}$ is atmospheric pressure. This gives

$$
\frac{\left(v_{0} A_{0}\right)^{2}}{2 A(z)^{2}}+g z=\frac{v_{0}^{2}}{2}
$$

This can be solved to give

$$
A(z)=\frac{A_{0}}{\sqrt{\left(1-2 g z / v_{0}^{2}\right)}}
$$

4 (i) The flow is inviscid and incompressible. It is radially symmetric so it is also irrotational. Hence the velocity potential ϕ exists and satisfies Laplace's equation

$$
\nabla^{2} \phi=0
$$

The spherically symmetric non-trivial solution to Laplace's equation is $\phi=A r^{-1}$. The boundary condition at the surface of the bubble requires the normal velocity to be continuous. This gives $\dot{R}=-A / r^{2}$ at $r=R$, so

$$
\phi=-\frac{R^{2} \dot{R}}{r}
$$

(ii) The flow is irrotational with constant density, and gravity does not act, so the quantity

$$
\frac{\partial \phi}{\partial t}+\frac{1}{2}|\nabla \phi|^{2}+\frac{p}{\rho}=B
$$

is constant in the fluid. For large r, the velocity vanishes, and hence $B=p_{\infty} / \rho$, where p_{∞} is the pressure far from the bubble. Computing the time-derivative of ϕ gives

$$
p=p_{\infty}+\rho\left(\frac{R^{2} \ddot{R}}{r}+\frac{2 R \dot{R}^{2}}{r}-\frac{R^{4} \dot{R}^{2}}{2 r^{4}}\right) .
$$

(iii) If the pressure is neglected inside the bubble, $p=0$ at the surface of the bubble $r=R$. Hence

$$
0=\frac{p_{\infty}}{\rho}+R \ddot{R}+\frac{3}{2} \dot{R}^{2}
$$

This equation can be integrated in time to give

$$
C=\frac{p_{\infty} R^{3}}{3 \rho}+\frac{1}{2} R^{3} \dot{R}^{2} .
$$

The constant C is fixed by taking $R=R_{0}$ when $\dot{R}=0$. Separating variables and noting that \dot{R} is negative gives

$$
\mathrm{d} t=-\sqrt{\frac{3 \rho}{2 p_{\infty}}} \frac{\mathrm{d} R}{\left[\left(R_{0} / R\right)^{3}-1\right]^{1 / 2}}
$$

Integrating the left-hand side from 0 to t_{c} and the right-hand side from R_{0} to 0 gives

$$
t_{c}=\sqrt{\frac{3 \rho}{2 p_{\infty}}} \int_{0}^{R_{0}}\left[\left(R_{0} / R\right)^{3}-1\right]^{-1 / 2} \mathrm{~d} R
$$

