Solution VII

1 Since the tube is long, assume that the flow is fully developed. We apply a pressure difference between the two ends so the Navier-Stoke equation along the pipe takes the two forms

$$
0=-p_{x}+\frac{\mu_{L}}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d} u_{W}}{\mathrm{~d} r}\right), \quad 0=-p_{x}+\frac{\mu_{A}}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r \frac{\mathrm{~d} u_{A}}{\mathrm{~d} r}\right) .
$$

We can integrate these two equations to get

$$
u_{L}=\frac{p_{x}}{4 \mu_{L}} r^{2}+A+B \log r, \quad u_{A}=\frac{p_{x}}{4 \mu_{A}} r^{2}+C+D \log r .
$$

The boundary conditions at the pipe walls are $u_{L}=0$ at $r=a$. At the interface between air and liquid at $r=h$, the velocity, u, and the shear stress, $\mu \mathrm{d} u / \mathrm{d} r$, are continuous. (The thickness of the liquid layer is $a-h$.) In addition the logarithmic term must vanish along the centerline of the pipe so $D=0$. The remaining three conditions are

$$
\frac{p_{x}}{4 \mu_{L}} a^{2}+A+B \log a=0, \quad \frac{p_{x}}{4 \mu_{L}} h^{2}+A+B \log h=\frac{p_{x}}{4 \mu_{A}} h^{2}+C, \quad \frac{p_{x}}{2} h+\frac{\mu_{L} B}{h}=\frac{p_{x}}{2} h
$$

Note that in the shear stress relation, the pressure terms cancel. Hence $B=0$ and we obtain

$$
u_{L}=\frac{p_{x}}{4 \mu_{L}}\left(r^{2}-a^{2}\right), \quad u_{A}=\frac{p_{x}}{4 \mu_{A}}\left(r^{2}-h^{2}\right)+\frac{p_{x}}{4 \mu_{L}}\left(h^{2}-a^{2}\right) .
$$

The volume flux in the liquid is

$$
Q_{L}=\int_{h}^{a} u_{L} 2 \pi r \mathrm{~d} r=\frac{\pi p_{x}}{4 \mu_{L}}\left(a^{2}-h^{2}\right)^{2}
$$

while the volume flux in the air is

$$
Q_{A}=\int_{0}^{a} u_{A} 2 \pi r \mathrm{~d} r=\frac{\pi p_{x}}{4 \mu_{A}} h^{2}\left[h^{2}+\frac{2 \mu_{A}}{\mu_{L}}\left(a^{2}-h^{2}\right)\right] .
$$

Their ratio is hence

$$
\frac{Q_{A}}{Q_{L}}=\frac{\mu_{L}}{\mu_{A}} \frac{1+2\left(\mu_{A} / \mu_{L}\right)\left(a^{2} / h^{2}-1\right)}{\left(1-a^{2} / h^{2}\right)^{2}}
$$

Note that this does not depend on the pressure gradient, just on the ratio of viscosities μ_{L} / μ_{A} and the geometric ratio h / a.

2 Take the x-axis along the slope and the z-axis perpendicular to it. The flow is steady $\left(\partial_{t}=0\right)$ and fully-developed $\left(\partial_{x}=0\right)$. Then the x-momentum equations in the two layers become

$$
0=\frac{\mathrm{d}^{2} u_{T, B}}{\mathrm{~d} z^{2}}-\frac{\rho g}{\mu_{T, B}} \sin \theta .
$$

The boundary conditions are no slip at the bottom: $u_{B}=0$ at $z=0$, no stress at the top of the upper layer (neglecting shear stress in the air): $\mu_{T} \mathrm{~d} u_{T} / \mathrm{d} z=0$ at $z=h_{B}+h_{T}$, and continuity of velocity and stress at the interface: $u_{B}=u_{T}$ and $\mu_{B} \mathrm{~d} u_{B} / \mathrm{d} z=\mu_{T} \mathrm{~d} u_{T} / \mathrm{d} z$ at $z=h_{B}$. Integrate and solve for the four constants using the four boundary and interfacial conditions:

$$
\begin{aligned}
& u_{B}=\frac{\rho g}{2 \mu_{B}} \sin \theta\left[z^{2}-2\left(h_{T}+h_{B}\right) z\right] \\
& u_{T}=\frac{\rho g}{2 \mu_{T}} g \sin \theta\left[z^{2}-2\left(h_{T}+h_{B}\right) z+h_{B}\left(2 h_{T}+h_{B}\right)\left(1-\mu_{T} / \mu_{B}\right)\right]
\end{aligned}
$$

The velocity in the bottom layer does not depend on μ_{T} because the shear stress at the top of the bottom layer is

$$
\mu_{B} \mathrm{~d} u_{B} / \mathrm{d} z=-\rho g \sin \theta h_{T},
$$

which is determined only by the weight of the fluid in the top layer.

3 As in class, look for a solution of the form

$$
u_{\theta}=\frac{\Gamma}{2 \pi r} f(\eta),
$$

where $\eta=r^{2} / 4 v t$. We obtain the same equation as in class, $f^{\prime \prime}+f^{\prime}=0$, but with different boundary conditions. Now at $t=0$ and as $r \rightarrow \infty, f \rightarrow 0$ (no initial vortex and no flow at infinity), while at $r=0, f=1$ (vortex now in flow). Hence $f=e^{-\eta}$. This gives the solution.

4 Initial conditions: $u(y, 0)=0$. Boundary conditions: $u(-h, t)=u(h, t)=0$. We write the velocity as the steady-state solution that we expect to see for large time plus a Fourier cosine series that satisfies the boundary conditions:

$$
\left.u(y, t)=-\frac{P}{\mu}\left(y^{2}-h^{2}\right)+\sum_{n=0}^{\infty} a_{n}(t) \cos \left[n+\frac{1}{2}\right) \pi y / h\right] .
$$

Substituting this into the governing equation and cancelling off the pressure term, multiplying by $\cos \left[\left(m+\frac{1}{2}\right) \pi y / h\right.$ and integrating over the channel gives

$$
\frac{\mathrm{d} a_{m}}{\mathrm{~d} t}=-\frac{v\left(m+\frac{1}{2}\right)^{2} \pi^{2}}{h^{2}} a_{m} .
$$

The solution to this set of equations is

$$
a_{n}(t)=a_{m}(0) \mathrm{e}^{-\mu\left[\left(n+\frac{1}{2}\right) \pi / 2 h\right]^{2} t} .
$$

It now remains to find $a_{m}(0)$ from the equation

$$
0=-\frac{P}{\mu}\left(y^{2}-h^{2}\right)+\sum_{n=1}^{\infty} a_{n}(0) \cos \left[\left(n+\frac{1}{2}\right) \pi y / h\right.
$$

Once again multiply by $\cos \left[\left(m+\frac{1}{2}\right) \pi y / h\right.$ and integrate to get

$$
a_{m}(0)=\frac{P}{\mu h} \int_{-h}^{h} \cos \left[\left(m+\frac{1}{2}\right) \pi y / h\left(y^{2}-h^{2}\right) \mathrm{d} y=-\frac{32(-1)^{n} h^{2}}{(2 m+1)^{3} \pi^{3}} \frac{P}{\mu} .\right.
$$

Velocity profiles are shown in Figure 1.

Figure 1: Temporal development of Poiseuille flow in channel.

