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Solution VII

1 Since the tube is long, assume that the flow is fully developed. We apply a pressure
difference between the two ends so the Navier-Stoke equation along the pipe takes the

two forms
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We can integrate these two equations to get
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The boundary conditions at the pipe walls are u; = 0 at r = a. At the interface between
air and liquid at r = h, the velocity, u, and the shear stress, udu/dr, are continuous. (The
thickness of the liquid layer is @ — h.) In addition the logarithmic term must vanish along
the centerline of the pipe so D = 0. The remaining three conditions are
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Note that in the shear stress relation, the pressure terms cancel. Hence B = 0 and we
obtain
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The volume flux in the liquid is
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while the volume flux in the air is
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Their ratio is hence ) s
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Note that this does not depend on the pressure gradient, just on the ratio of viscosities
ur/pa and the geometric ratio h/a.




2 Take the x-axis along the slope and the z-axis perpendicular to it. The flow is steady
(0¢ = 0) and fully-developed (9 = 0). Then the x-momentum equations in the two layers
become
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The boundary conditions are no slip at the bottom: up = 0 at z = 0, no stress at the top
of the upper layer (neglecting shear stress in the air): yrdur/dz = 0 atz = hp + hr, and
continuity of velocity and stress at the interface: up = ur and ypdup/dz = purdur/dz at
z = hp. Integrate and solve for the four constants using the four boundary and interfacial
conditions:
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The velocity in the bottom layer does not depend on y1 because the shear stress at the top
of the bottom layer is
pupdup/dz = —pgsinbhr,

which is determined only by the weight of the fluid in the top layer.

3 Asin class, look for a solution of the form

r

Ug = rr (1),

where 17 = 12 /4vt. We obtain the same equation as in class, f” + f’ = 0, but with different
boundary conditions. Now att = 0 and as ¥ — oo, f — 0 (no initial vortex and no flow
at infinity), while at r = 0, f = 1 (vortex now in flow). Hence f = e~ ". This gives the
solution.

4 Initial conditions: u(y,0) = 0. Boundary conditions: u(—h,t) = u(h,t) = 0. We write
the velocity as the steady-state solution that we expect to see for large time plus a Fourier
cosine series that satisfies the boundary conditions:

u(y,t) = —g(yz — %) + i ay(t) cos [n + 3)7y/h).
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Substituting this into the governing equation and cancelling off the pressure term, multi-
plying by cos [(m + %) rty /h and integrating over the channel gives
day, _ v(m+3)*m
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The solution to this set of equations is

am.

an(t) = am(o)ei}l[(”+%)”/2h]2t.



It now remains to find a,,(0) from the equation

0= —g(y2 — 1) + i a,(0) cos [(n + 3) 7ty /h.
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Once again multiply by cos [(m + 3)7y/h and integrate to get
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Velocity profiles are shown in Figure 1.
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Figure 1: Temporal development of Poiseuille flow in channel.



