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Solution VII

1 Since the tube is long, assume that the flow is fully developed. We apply a pressure
difference between the two ends so the Navier–Stoke equation along the pipe takes the
two forms

0 = −px +
µL

r
d
dr

(
r

duW

dr

)
, 0 = −px +

µA

r
d
dr

(
r

duA

dr

)
.

We can integrate these two equations to get

uL =
px

4µL
r2 + A + B log r, uA =

px

4µA
r2 + C + D log r.

The boundary conditions at the pipe walls are uL = 0 at r = a. At the interface between
air and liquid at r = h, the velocity, u, and the shear stress, µdu/dr, are continuous. (The
thickness of the liquid layer is a− h.) In addition the logarithmic term must vanish along
the centerline of the pipe so D = 0. The remaining three conditions are

px

4µL
a2 + A + B log a = 0,

px

4µL
h2 + A + B log h =

px

4µA
h2 + C,

px

2
h +

µLB
h

=
px

2
h.

Note that in the shear stress relation, the pressure terms cancel. Hence B = 0 and we
obtain

uL =
px

4µL
(r2 − a2), uA =

px

4µA
(r2 − h2) +

px

4µL
(h2 − a2).

The volume flux in the liquid is

QL =
∫ a

h
uL2πr dr =

πpx

4µL
(a2 − h2)2

while the volume flux in the air is

QA =
∫ a

0
uA2πr dr =

πpx

4µA
h2
[

h2 +
2µA

µL
(a2 − h2)

]
.

Their ratio is hence
QA

QL
=

µL

µA

1 + 2(µA/µL)(a2/h2 − 1)
(1− a2/h2)2 .

Note that this does not depend on the pressure gradient, just on the ratio of viscosities
µL/µA and the geometric ratio h/a.
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2 Take the x-axis along the slope and the z-axis perpendicular to it. The flow is steady
(∂t = 0) and fully-developed (∂x = 0). Then the x-momentum equations in the two layers
become

0 =
d2uT,B

dz2 − ρg
µT,B

sin θ.

The boundary conditions are no slip at the bottom: uB = 0 at z = 0, no stress at the top
of the upper layer (neglecting shear stress in the air): µTduT/dz = 0 at z = hB + hT, and
continuity of velocity and stress at the interface: uB = uT and µBduB/dz = µTduT/dz at
z = hB. Integrate and solve for the four constants using the four boundary and interfacial
conditions:

uB =
ρg

2µB
sin θ[z2 − 2(hT + hB)z],

uT =
ρg

2µT
g sin θ[z2 − 2(hT + hB)z + hB(2hT + hB)(1− µT/µB)].

The velocity in the bottom layer does not depend on µT because the shear stress at the top
of the bottom layer is

µBduB/dz = −ρg sin θhT,

which is determined only by the weight of the fluid in the top layer.

3 As in class, look for a solution of the form

uθ =
Γ

2πr
f (η),

where η = r2/4νt. We obtain the same equation as in class, f ′′+ f ′ = 0, but with different
boundary conditions. Now at t = 0 and as r → ∞, f → 0 (no initial vortex and no flow
at infinity), while at r = 0, f = 1 (vortex now in flow). Hence f = e−η. This gives the
solution.

4 Initial conditions: u(y, 0) = 0. Boundary conditions: u(−h, t) = u(h, t) = 0. We write
the velocity as the steady-state solution that we expect to see for large time plus a Fourier
cosine series that satisfies the boundary conditions:

u(y, t) = −P
µ
(y2 − h2) +

∞

∑
n=0

an(t) cos [n + 1
2)πy/h].

Substituting this into the governing equation and cancelling off the pressure term, multi-
plying by cos [(m + 1

2)πy/h and integrating over the channel gives

dam

dt
= −

ν(m + 1
2)

2π2

h2 am.

The solution to this set of equations is

an(t) = am(0)e−µ[(n+1
2 )π/2h]2t.
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It now remains to find am(0) from the equation

0 = −P
µ
(y2 − h2) +

∞

∑
n=1

an(0) cos [(n + 1
2)πy/h.

Once again multiply by cos [(m + 1
2)πy/h and integrate to get

am(0) =
P

µh

∫ h

−h
cos [(m + 1

2)πy/h(y2 − h2)dy = − 32(−1)nh2

(2m + 1)3π3
P
µ

.

Velocity profiles are shown in Figure 1.
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Figure 1: Temporal development of Poiseuille flow in channel.
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